国际肿瘤学杂志››2020,Vol. 47››Issue (9): 524-529.doi:10.3760/cma.j.cn371439-20200113-00071
收稿日期:
2020-01-13修回日期:
2020-05-30出版日期:
2020-09-08发布日期:
2020-10-27通讯作者:
于建春 E-mail:yujianchun@eyou.com基金资助:
Liu Yunhe, Li Wentao, Yu Jianchun()
Received:
2020-01-13Revised:
2020-05-30Online:
2020-09-08Published:
2020-10-27Contact:
Yu Jianchun E-mail:yujianchun@eyou.comSupported by:
摘要:
目的分析非小细胞肺癌(NSCLC)患者外周血初始T细胞及记忆T细胞亚群分布情况。方法选取2018年6月至12月天津中医药大学第一附属医院肿瘤科NSCLC患者25例,同期健康志愿者20例作为对照,应用流式细胞仪分析外周血初始T细胞及记忆T细胞亚群含量,所得结果应用SPSS 16.0进行统计分析。结果NSCLC患者初始T细胞/干细胞样中央记忆T细胞(TN/SCM)百分率及绝对数均明显低于对照组[(7.71±1.11)%vs.(15.84±2.00)%,t=3.685,P=0.001;(8.38±1.23)×107/Lvs.(3.40±0.43)×108/L,t=6.130,P<0.001],中央记忆T细胞(TCM)百分率及绝对数均明显低于对照组[(6.62±1.16)%vs.(17.88±0.83)%,t=7.641,P<0.001;(7.98±1.78)×107/Lvs.(3.40±0.31)×108/L,t=9.028,P<0.001],CD8+TCM细胞绝对数明显低于对照组[(5.19±1.04)×106/Lvs.(1.49±0.15)×107/L,t=5.561,P<0.001]。NSCLC患者效应记忆T细胞(TEM)百分率明显高于对照组[(38.27±2.01)%vs.(17.37±1.06)%,t=8.776,P<0.001],CD8+TEM细胞百分率及绝对数均明显高于对照组[(13.93±1.55)%vs.(4.65±0.52)%,t=5.310,P<0.001;(1.48±0.14)×108/Lvs.(9.97±1.14)×107/L,t=2.584,P=0.014],终末分化效应记忆T细胞(TEMRA)百分率明显高于对照组[(17.33±1.86)%vs.(8.48±1.01)%,t=3.989,P<0.001]。Ⅰ~Ⅱ期NSCLC患者CD8+TCM细胞百分率及绝对数均明显低于Ⅲ~Ⅳ期患者[(0.33±0.06)%vs.(0.89±0.34)%,t=2.600,P=0.020;(3.99±0.84)×106/Lvs.(9.03±3.07)×106/L,t=2.270,P=0.040]。不同病理类型NSCLC患者的初始T细胞及记忆T细胞亚群差异均无统计学意义(均P>0.05)。结论NSCLC患者初始/记忆T细胞亚群较健康志愿者发生变化,具有分化能力和长期存活特性的TN/SCM及TCM降低,而且Ⅰ~Ⅱ期患者降低更为明显,以发挥免疫效应为主的TEM及TEMRA明显升高。
刘云鹤, 李文涛, 于建春. 非小细胞肺癌患者外周血初始T细胞及记忆T细胞亚群分布[J]. 国际肿瘤学杂志, 2020, 47(9): 524-529.
Liu Yunhe, Li Wentao, Yu Jianchun. Distribution of naïve T cell and memory T cell subsets in peripheral blood of non-small cell lung cancer patients[J]. Journal of International Oncology, 2020, 47(9): 524-529.
表1
健康志愿者与NSCLC患者初始T细胞及记忆T细胞亚群百分率对比($\bar{x}\pm s$)"
T细胞表型 | 健康志愿者(n=20) | NSCLC患者(n=25) | t值 | P值 |
---|---|---|---|---|
TN/SCM | 15.84±2.00 | 7.71±1.11 | 3.685 | 0.001 |
CD8+TN/SCM | 1.89±0.24 | 2.86±0.54 | 1.528 | 0.135 |
TCM | 17.88±0.83 | 6.62±1.16 | 7.641 | <0.001 |
CD8+TCM | 0.73±0.08 | 0.47±0.10 | 1.892 | 0.066 |
TEM | 17.37±1.06 | 38.27±2.01 | 8.776 | <0.001 |
CD8+TEM | 4.65±0.52 | 13.93±1.55 | 5.310 | <0.001 |
TEMRA | 8.48±1.01 | 17.33±1.86 | 3.989 | <0.001 |
表2
健康志愿者与NSCLC患者初始T细胞及记忆T细胞亚群绝对计数对比($\bar{x}\pm s$)"
T细胞表型 | 健康志愿者(n=20) | NSCLC患者(n=25) | t值 | P值 |
---|---|---|---|---|
TN/SCM | (3.40±0.43)×108/L | (8.38±1.23)×107/L | 6.130 | <0.001 |
CD8+TN/SCM | (3.96±0.49)×107/L | (2.91±0.50)×107/L | 1.486 | 0.146 |
TCM | (3.40±0.31)×108/L | (7.98±1.78)×107/L | 9.028 | <0.001 |
CD8+TCM | (1.49±0.15)×107/L | (5.19±1.04)×106/L | 5.561 | <0.001 |
TEM | (3.84±0.36)×108/L | (4.32±0.45)×108/L | 0.823 | 0.416 |
CD8+TEM | (9.97±1.14)×107/L | (1.48±0.14)×108/L | 2.584 | 0.014 |
TEMRA | (1.83±0.33)×108/L | (2.04±0.32)×108/L | 0.461 | 0.647 |
表3
不同分期、不同病理类型NSCLC患者初始T细胞及记忆T细胞亚群百分率比较($\bar{x}\pm s$,%)"
T细胞表型 | TNM分期 | t值 | P值 | 病理类型 | t值 | P值 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ~Ⅱ期(n=18) | Ⅲ~Ⅳ期(n=7) | 腺癌(n=17) | 鳞状细胞癌(n=8) | ||||||||||||||
TN/SCM | 7.60±1.24 | 8.08±2.72 | 0.180 | 0.860 | 8.38±1.40 | 6.63±1.88 | 0.750 | 0.460 | |||||||||
CD8+TN/SCM | 2.84±0.59 | 2.91±1.44 | 0.050 | 0.960 | 2.70±0.45 | 3.12±1.28 | 0.370 | 0.720 | |||||||||
TCM | 6.05±1.26 | 8.45±2.83 | 0.880 | 0.390 | 6.55±1.46 | 6.75±2.02 | 0.080 | 0.930 | |||||||||
CD8+TCM | 0.33±0.06 | 0.89±0.34 | 2.600 | 0.020 | 0.48±0.15 | 0.46±0.12 | 0.080 | 0.930 | |||||||||
T细胞表型 | TNM分期 | t值 | P值 | 病理类型 | t值 | P值 | |||||||||||
Ⅰ~Ⅱ期(n=18) | Ⅲ~Ⅳ期(n=7) | 腺癌(n=17) | 鳞状细胞癌(n=8) | ||||||||||||||
TEM | 38.61±2.13 | 37.19±5.44 | 0.300 | 0.770 | 38.13±1.81 | 38.50±4.59 | 0.080 | 0.930 | |||||||||
CD8+TEM | 13.26±1.04 | 16.08±6.02 | 0.770 | 0.450 | 12.91±1.19 | 15.58±3.68 | 0.820 | 0.420 | |||||||||
TEMRA | 17.62±2.15 | 16.42±4.14 | 0.270 | 0.790 | 18.48±2.08 | 15.46±3.64 | 0.780 | 0.440 |
表4
不同分期、不同病理类型NSCLC患者初始T细胞及记忆T细胞亚群绝对计数比较($\bar{x}\pm s$)"
T细胞表型 | TNM分期 | t值 | P值 | 病理类型 | t值 | P值 | ||
---|---|---|---|---|---|---|---|---|
Ⅰ~Ⅱ期(n=18) | Ⅲ~Ⅳ期(n=7) | 腺癌(n=17) | 鳞状细胞癌(n=8) | |||||
TN/SCM(×107/L) | 8.35±1.40 | 8.48±2.88 | 0.050 | 0.960 | 9.10±1.40 | 7.21±2.35 | 0.740 | 0.470 |
CD8+TN/SCM(×106/L) | 28.11±4.44 | 32.18±7.15 | 0.340 | 0.740 | 28.81±4.93 | 29.51±11.20 | 0.070 | 0.950 |
TCM(×107/L) | 7.76±2.16 | 8.69±3.17 | 0.220 | 0.830 | 7.72±2.04 | 8.39±3.47 | 0.180 | 0.860 |
CD8+TCM(×106/L) | 3.99±0.84 | 9.03±3.07 | 2.270 | 0.040 | 5.27±1.44 | 5.05±1.52 | 0.100 | 0.920 |
TEM(×107/L) | 44.22±5.80 | 40.02±3.63 | 0.390 | 0.700 | 46.41±6.72 | 38.04±4.22 | 0.900 | 0.380 |
CD8+TEM(×107/L) | 14.62±1.65 | 15.34±3.06 | 0.210 | 0.840 | 14.80±1.84 | 14.76±2.38 | 0.010 | 0.990 |
TEMRA(×107/L) | 20.40±3.60 | 20.45±7.32 | 0.010 | 0.990 | 23.00±4.27 | 16.20±4.47 | 1.040 | 0.310 |
[1] | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492. doi:10.3322/caac.21492pmid:30207593 |
[2] | Devesa SS, Bray F, Vizcaino AP, et al. International lung cancer trends by histologic type: male∶female differences diminishing and adenocarcinoma rates rising[J]. Int J Cancer, 2005,117(2):294-299. DOI: 10.1002/ijc.21183. doi:10.1002/ijc.21183pmid:15900604 |
[3] | Thapa P, Farber DL. The role of the thymus in the immune response[J]. Thorac Surg Clin, 2019,29(2):123-131. DOI: 10.1016/j.thorsurg.2018.12.001. doi:10.1016/j.thorsurg.2018.12.001pmid:30927993 |
[4] | Butcher EC, Picker LJ. Lymphocyte homing and homeostasis[J]. Science, 1996,272(5258):60-66. DOI: 10.1126/science.272.5258.60. doi:10.1126/science.272.5258.60pmid:8600538 |
[5] | Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment[J]. Front Immunol, 2018,9:3059. DOI: 10.3389/fimmu.2018.03059. doi:10.3389/fimmu.2018.03059 |
[6] | MacLennan IC, Gulbranson-Judge A, Toellner KM, et al. The changing preference of T and B cells for partners as T-dependent antibody responses develop[J]. Immunol Rev, 1997,156:53-66. DOI: 10.1111/j.1600-065x.1997.tb00958.x. doi:10.1111/j.1600-065x.1997.tb00958.xpmid:9176699 |
[7] | Garside P, Ingulli E, Merica RR, et al. Visualization of specific B and T lymphocyte interactions in the lymph node[J]. Science, 1998,281(5373):96-99. DOI: 10.1126/science.281.5373.96. doi:10.1126/science.281.5373.96pmid:9651253 |
[8] | Klenerman P, Hill A. T cells and viral persistence: lessons from diverse infections[J]. Nat Immunol, 2005,6(9):873-879. DOI: 10.1038/ni1241. pmid:16116467 |
[9] | Bingaman AW, Farber DL. Memory T cells in transplantation: generation, function, and potential role in rejection[J]. Am J Transplant, 2004,4(6):846-852. DOI: 10.1111/j.1600-6143.2004.00453.x. doi:10.1111/j.1600-6143.2004.00453.xpmid:15147417 |
[10] | Westermann J, Ehlers EM, Exton MS, et al. Migration of naive, effector and memory T cells: implications for the regulation of immune responses[J]. Immunol Rev, 2001,184:20-37. DOI: 10.1034/j.1600-065x.2001.1840103.x. doi:10.1034/j.1600-065x.2001.1840103.xpmid:12086313 |
[11] | Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naïve, central memory and effector memory CD4 + T cells [J]. Pathol Biol (Paris), 2003,51(2):64-66. DOI: 10.1016/s0369-8114(03)00098-1. doi:10.1016/S0369-8114(03)00098-1 |
[12] | Sallusto F, Lenig D, Förster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J]. Nature, 1999,401(6754):708-712. DOI: 10.1038/44385. doi:10.1038/44385pmid:10537110 |
[13] | Sathaliyawala T, Kubota M, Yudanin N, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets[J]. Immunity, 2013,38(1):187-197. DOI: 10.1016/j.immuni.2012.09.020. doi:10.1016/j.immuni.2012.09.020pmid:23260195 |
[14] | Wang X, Wong CW, Urak R, et al. Comparison of naïve and central memory derived CD8+effector cell engraftment fitness and function following adoptive transfer [J]. Oncoimmunology, 2015,5(1):e1072671. DOI: 10.1080/2162402X.2015.1072671. doi:10.1080/2162402X.2015.1072671pmid:26942092 |
[15] | Kaech SM, Cui W. Transcriptional control of effector and memory CD8+T cell differentiation [J]. Nat Rev Immunol, 2012,12(11):749-761. DOI: 10.1038/nri3307. doi:10.1038/nri3307pmid:23080391 |
[16] | Gattinoni L, Speiser DE, Lichterfeld M, et al. T memory stem cells in health and disease[J]. Nat Med, 2017,23(1):18-27. DOI: 10.1038/nm.4241. doi:10.1038/nm.4241pmid:28060797 |
[17] | Hinrichs CS, Borman ZA, Cassard L, et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+T cells mediate superior antitumor immunity [J]. Proc Natl Acad Sci U S A, 2009,106(41):17469-17474. DOI: 10.1073/pnas.0907448106. doi:10.1073/pnas.0907448106pmid:19805141 |
[1] | 滕菲,崔桂敏,史鸿云,刘妙玲,李延红.放疗联合替莫唑胺治疗非小细胞肺癌脑转移瘤的临床观察[J]. 国际肿瘤学杂志, 2017, 44(4): 271-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||