国际肿瘤学杂志››2022,Vol. 49››Issue (7): 390-399.doi:10.3760/cma.j.cn371439-20220429-00076
收稿日期:
2022-04-29修回日期:
2022-06-14出版日期:
2022-07-08发布日期:
2022-09-19通讯作者:
谢宇 E-mail:xieyu2101@163.com基金资助:
Lin Yongjuan, Li Huiying, Yin Zhenyu, Guo Aibin, Xie Yu()
Received:
2022-04-29Revised:
2022-06-14Online:
2022-07-08Published:
2022-09-19Contact:
Xie Yu E-mail:xieyu2101@163.comSupported by:
摘要:
目的分析脑脊液中代谢标志物在晚期肺腺癌软脑膜转移(LM)中的诊断价值。方法收集2019年12月至2021年12月于南京大学医学院附属鼓楼医院就诊的肺腺癌LM患者脑脊液样本46例(LM组),另外选取同期神经系统良性疾病患者的脑脊液样本48例(对照组),采用高效液相色谱-质谱技术对脑脊液进行代谢组学分析,应用主成分分析(PCA)和正交偏最小二乘判别分析法(OPLS-DA)进行建模,采用多标准评价体系寻找两组间差异性代谢产物,并利用受试者工作特征(ROC)曲线、通路富集分析等方法,筛选与肺腺癌LM发病相关的代谢物及其通路。结果LM组与对照组间的年龄(Z=-0.41,P=0.210)、性别(χ2=1.19,P=0.275)、吸烟史(χ2=2.86,P=0.091)、Karnofsky功能状态评分(χ2=0.65,P=0.419)及颅内压增高比例(χ2=0.65,P=0.419)差异均无统计学意义。PCA模型(正离子与负离子模式下,R2X分别为0.608和0.583,Q2分别为0.462和0.513)和OPLS-DA模型(正离子与负离子模式下,R2Y分别为0.967和0.889,Q2分别为0.959和0.852)显示整体数据质量良好,具有较好的解释率和预测率,对数据进行200次重采集验证,不存在过度拟合现象。两组人群代谢轮廓有显著差别,应用多标准评价体系共筛选出30个内源性差异性代谢物,通过ROC曲线分析确定了曲线下面积(AUC)较大的6种潜在的生物标志物,包括酪氨酸(AUC=0.967,95%CI为0.906~1.000)、苯丙氨酸(AUC=0.992,95%CI为0.973~1.000)、丙酮酸(AUC=0.976,95%CI为0.935~1.000)、色氨酸(AUC=0.935,95%CI为0.880~0.973)、葡萄糖(AUC=0.932,95%CI为0.880~0.975)、一磷酸腺苷(AUC=0.993,95%CI为0.987~1.000)。将筛选的30种差异性代谢产物进行代谢通路富集分析,匹配到20条相关的代谢通路,其中最可能引起代谢产物变化的4条代谢通路为:糖酵解及糖代谢合成,丙酮酸代谢,苯丙氨酸代谢,苯丙氨酸、酪氨酸和色氨酸生物合成。结论非靶向代谢组学可有效筛查肺腺癌LM患者特异的脑脊液代谢物,6种潜在的代谢物如酪氨酸、苯丙氨酸、丙酮酸、色氨酸、一磷酸腺苷、葡萄糖及其代谢通路可能参与肺腺癌LM的发病过程。
林永娟, 李会颖, 尹震宇, 郭爱斌, 谢宇. 基于非靶标代谢组学的肺腺癌软脑膜转移患者脑脊液代谢特征研究[J]. 国际肿瘤学杂志, 2022, 49(7): 390-399.
Lin Yongjuan, Li Huiying, Yin Zhenyu, Guo Aibin, Xie Yu. Investigation of cerebrospinal fluid metabolites in patients with leptomeningeal metastases from lung adenocarcinoma based on untargeted metabolomics[J]. Journal of International Oncology, 2022, 49(7): 390-399.
表1
两组患者临床资料比较[例(%)/M(Q1,Q3)]"
基本指标 | LM组(n=46) | 对照组(n=48) | χ2/Z值 | P值 |
---|---|---|---|---|
性别 | ||||
男 | 30(65.22) | 26(54.17) | 1.19 | 0.275 |
女 | 16(34.78) | 22(45.83) | ||
年龄(岁) | 57.00(52.00,63.00) | 57.50(52.00,64.00) | -0.41 | 0.210 |
吸烟史 | ||||
是 | 16(34.78) | 25(52.08) | 2.86 | 0.091 |
否 | 30(65.22) | 23(47.92) | ||
KPS评分(分) | ||||
<70 | 16(34.78) | 13(27.08) | 0.65 | 0.419 |
≥70 | 30(65.22) | 35(72.92) | ||
颅内压(kPa) | ||||
>1.77 | 30(65.22) | 35(72.92) | 0.65 | 0.419 |
≤1.77 | 16(34.78) | 13(27.08) |
表2
46例肺腺癌软脑膜转移患者与48例神经系统良性疾病患者脑脊液中差异性代谢物比较"
代谢物 | 保留时间(min) | 质荷比 | 变化倍数 | VIP | P值 | 代谢物 | 保留时间(min) | 质荷比 | 变化倍数 | VIP | P值 |
---|---|---|---|---|---|---|---|---|---|---|---|
胆碱 | 0.24 | 104.11 | 15.28 | 1.16 | 0.024 | 5-羟基-L色氨酸 | 10.22 | 220.22 | 20.34 | 1.16 | 0.003 |
酪氨酸 | 0.62 | 182.08 | 691.81 | 1.28 | 0.001 | 花生四烯酸 | 10.26 | 303.24 | 2.62 | 1.10 | 0.025 |
吡哆醇 | 0.63 | 184.06 | 11.54 | 1.47 | 0.029 | γ-亚麻酸 | 12.77 | 280.45 | 98.45 | 1.21 | 0.012 |
苯丙氨酸 | 0.65 | 164.07 | 896.92 | 1.20 | <0.001 | 泛酸 | 0.55 | 219.24 | 4.15 | 1.02 | 0.012 |
酮亮氨酸 | 1.50 | 129.06 | 2.61 | 1.35 | 0.006 | 色氨酸 | 0.64 | 205.10 | 589.27 | 1.48 | 0.014 |
3-磷酸甘油 | 1.52 | 172.07 | 44.22 | 1.13 | 0.016 | 甘油醛 | 0.64 | 89.02 | 32.67 | 1.71 | 0.017 |
L-组氨酸 | 2.19 | 254.11 | 6.66 | 1.27 | 0.005 | 鸟嘌呤 | 1.23 | 145.67 | 101.36 | 1.11 | 0.003 |
前列腺素B2 | 3.36 | 334.45 | 26.44 | 1.29 | 0.025 | 腺苷A | 2.05 | 246.30 | 25.17 | 1.71 | 0.005 |
乳酸 | 5.65 | 85.20 | 21.62 | 1.22 | 0.002 | 三磷酸鸟苷 | 2.35 | 523.18 | 646.31 | 1.00 | 0.006 |
丙酮酸 | 5.79 | 79.89 | 694.81 | 1.29 | <0.001 | 一磷酸腺苷 | 7.06 | 347.22 | 44.11 | 1.72 | <0.001 |
2-羟基丁酸 | 5.80 | 113.67 | 164.31 | 1.35 | 0.004 | 赖氨酸 | 12.88 | 135.53 | 79.35 | 1.73 | 0.004 |
丙氨酸 | 6.59 | 74.12 | 140.33 | 1.31 | 0.015 | 谷氨酰胺 | 14.32 | 164.23 | 69.53 | 1.77 | 0.001 |
白三烯B4 | 7.06 | 335.22 | 70.72 | 1.05 | 0.011 | 葡萄糖 | 17.12 | 124.50 | 512.52 | 1.06 | <0.001 |
α-亚麻酸 | 7.07 | 277.22 | 78.94 | 1.17 | 0.019 | 乙酸 | 18.56 | 65.67 | 37.32 | 1.09 | 0.001 |
甘油磷酸胆碱 | 8.04 | 237.12 | 24.95 | 1.15 | 0.042 | 核糖醇 | 19.56 | 125.67 | 2.95 | 1.66 | 0.005 |
表4
预测肺腺癌LM显著性较高的20条代谢通路信息表"
序号 | 信号通路 | P值 |
---|---|---|
1 | 氨基酰基-tRNA生物合成 | 1.63×10-5 |
2 | 糖酵解及糖代谢合成 | 1.11×10-3 |
3 | 苯丙氨酸、酪氨酸和色氨酸生物合成 | 1.98×10-3 |
4 | 丙酮酸代谢 | 7.14×10-3 |
5 | 苯丙氨酸代谢 | 1.39×10-2 |
6 | 丙氨酸、天冬氨酸和谷氨酸代谢 | 1.41×10-2 |
7 | 乙醛酸盐和二羧酸酯代谢 | 2.03×10-2 |
8 | 不饱和脂肪酸的生物合成 | 2.78×10-2 |
9 | 脂代谢 | 2.77×10-2 |
10 | 嘌呤代谢 | 3.04×10-2 |
11 | 谷氨酰胺代谢 | 0.011 |
12 | 氮代谢 | 0.021 |
13 | 甘氨酸、丝氨酸和苏氨酸代谢 | 0.022 |
14 | 缬氨酸、亮氨酸和异亮氨酸生物合成 | 0.025 |
15 | 花生四烯酸酸代谢 | 0.030 |
16 | 泛醌和其他萜类化合物-醌生物合成 | 0.036 |
17 | 维生素B6代谢 | 0.037 |
18 | 生物素代谢 | 0.040 |
19 | 色氨酸代谢 | 0.041 |
20 | 酪氨酸代谢 | 0.048 |
[1] | Zheng MM, Tu HY, Yang JJ, et al. Clinical outcomes of non-small cell lung cancer patients with leptomeningeal metastases after immune checkpoint inhibitor treatments[J]. Eur J Cancer, 2021, 150: 23-30. DOI: 10.1016/j.ejca.2021.03.037. doi:10.1016/j.ejca.2021.03.037 |
[2] | Reckamp KL. Targeted therapy for patients with metastatic non-small cell lung cancer[J]. J Natl Compr Canc Netw, 2018, 16(5S): 601-604. DOI: 10.6004/jnccn.2018.0046. doi:10.6004/jnccn.2018.0046 |
[3] | Cheng HY, Perez-Soler R. Leptomeningeal metastases in non-small-cell lung cancer[J]. Lancet Oncol, 2018, 19(1): e43-e55. DOI: 10.1016/S1470-2045(17)30689-7. doi:10.1016/S1470-2045(17)30689-7 |
[4] | 杨晨光, 徐志巧. 驱动基因阳性晚期非小细胞肺癌靶向治疗[J]. 国际肿瘤学杂志, 2021, 48(4): 235-240. DOI: 10.3760/cma.j.cn371439-20200911-00047. doi:10.3760/cma.j.cn371439-20200911-00047 |
[5] | Pellerino A, Brastianos PK, Rudà R, et al. Leptomeningeal metastases from solid tumors: recent advances in diagnosis and molecular approaches[J]. Cancers (Basel), 2021, 13(12): 2888. DOI: 10.3390/cancers13122888. doi:10.3390/cancers13122888 |
[6] | 杨蕾, 张传玉, 张在先, 等. 非小细胞肺癌影像基因组学[J]. 国际肿瘤学杂志, 2020, 47(9): 555-559. DOI: 10.3760/cma.j.cn371439-20200423-00077. doi:10.3760/cma.j.cn371439-20200423-00077 |
[7] | Gkountakos A, Centonze G, Vita E, et al. Identification of targetable liabilities in the dynamic metabolic profile of EGFR-mutant lung adenocarcinoma: thinking beyond genomics for overcoming EGFR TKI resistance[J]. Biomedicines, 2022, 10(2): 277. DOI: 10.3390/biomedicines10020277. doi:10.3390/biomedicines10020277 |
[8] | Wang Y, Liu Y, Chen R, et al. Metabolomic characterization of cerebrospinal fluid from intracranial bacterial infection pediatric patients: a pilot study[J]. Molecules, 2021, 26(22): 6871. DOI: 10.3390/molecules26226871. doi:10.3390/molecules26226871 |
[9] | Miyamoto S, Taylor SL, Barupal DK, et al. Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry[J]. Metabolites, 2015, 5(2): 192-210. DOI: 10.3390/metabo5020192. doi:10.3390/metabo5020192pmid:25859693 |
[10] | Han ZG, Ke MX, Liu X, et al. Molecular imaging, how close to clinical precision medicine in lung, brain, prostate and breast cancers[J]. Mol Imaging Biol, 2022, 24(1): 8-22. DOI: 10.1007/s11307-021-01631-y. doi:10.1007/s11307-021-01631-y |
[11] | Klupczynska A, Dereziński P, Garrett TJ, et al. Study of early stage non-small-cell lung cancer using Orbitrap-based global serum metabolomics[J]. J Cancer Res Clin Oncol, 2017, 143(4): 649-659. DOI: 10.1007/s00432-017-2347-0. doi:10.1007/s00432-017-2347-0pmid:28168355 |
[12] | Han YS, Shi LY, Chen JX, et al. Screening and identification of potential novel lipid biomarkers for non-small cell lung cancer using ultra-high performance liquid chromatography tandem mass spectrometry[J]. Anat Rec (Hoboken), 2022, 305(5): 1087-1099. DOI: 10.1002/ar.24725. doi:10.1002/ar.24725 |
[13] | Zhang SN, Li XZ, Liu SM, et al. Metabonomic study of the effects of acanthopanax senticosus on peripheral system of rats[J]. Planta Med, 2015, 81(9): 722-732. DOI: 10.1055/s-0035-1545915. doi:10.1055/s-0035-1545915 |
[14] | Rodriguez-Martinez A, Posma JM, Ayala R, et al. MWASTools: an R/bioconductor package for metabolome-wide association studies[J]. Bioinformatics, 2018, 34(5): 890-892. DOI: 10.1093/bioinformatics/btx477. doi:10.1093/bioinformatics/btx477pmid:28961702 |
[15] | Hwangbo N, Zhang XY, Raftery D, et al. A metabolomic aging clock using human cerebrospinal fluid[J]. J Gerontol A Biol Sci Med Sci, 2022, 77(4): 744-754. DOI: 10.1093/gerona/glab212. doi:10.1093/gerona/glab212 |
[16] | Yoo BC, Lee JH, Kim KH, et al. Cerebrospinal fluid metabolomic profiles can discriminate patients with leptomeningeal carcinoma-tosis from patients at high risk for leptomeningeal metastasis[J]. Oncotarget, 2017, 8(60): 101203-101214. DOI: 10.18632/oncotarget.20983. doi:10.18632/oncotarget.20983 |
[17] | Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications[J]. Anal Bioanal Chem, 2021, 413(24): 5927-5948. DOI: 10.1007/s00216-021-03425-1. doi:10.1007/s00216-021-03425-1pmid:34142202 |
[18] | Sun G, Jiang F, Hu S, et al. Metabolomic analysis reveals potential biomarkers and serum metabolomic profiling in spontaneous intracerebral hemorrhage patients using UPLC/quadrupole time-of-flight MS[J]. Biomed Chromatogr, 2022, 36(1): e5241. DOI: 10.1002/bmc.5241. doi:10.1002/bmc.5241 |
[19] | Wettasinghe AP, Singh N, Starcher CL, et al. Detecting attomolar DNA-damaging anticancer drug activity in cell lysates with electrochemical DNA devices[J]. ACS Sens, 2021, 6(7): 2622-2629. DOI: 10.1021/acssensors.1c00365. doi:10.1021/acssensors.1c00365 |
[20] | Endo F, Tanaka Y, Tomoeda K, et al. Animal models reveal patho-physiologies of tyrosinemias[J]. J Nutr, 2003, 133( doi:10.1093/jn/133.6.2063S |
[21] | Hu JM, Sun HT. Serum proton NMR metabolomics analysis of human lung cancer following microwave ablation[J]. Radiat Oncol, 2018, 13(1): 40. DOI: 10.1186/s13014-018-0982-5. doi:10.1186/s13014-018-0982-5 |
[22] | Yu ST, Li J, Gao W, et al. Uncovering the anticancer mechanism of petroleum extracts of Farfarae Flos against Lewis lung cancer by metabolomics and network pharmacology analysis[J]. Biomed Chromatogr, 2020, 34(9): e4878. DOI: 10.1002/bmc.4878. doi:10.1002/bmc.4878 |
[23] | Ding M, Li Z, Yu XA, et al. A network pharmacology-integrated metabolomics strategy for clarifying the difference between effective compounds of raw and processed Farfarae flos by ultra high-performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. J Pharm Biomed Anal, 2018, 156: 349-357. DOI: 10.1016/j.jpba.2018.05.003. doi:10.1016/j.jpba.2018.05.003 |
[24] | Zhang Y, Li J, Zhang S, et al. Multifunctional spiky topological nanocapsules for the discrimination and differential inhibition of inflammation and cancer[J]. ACS Appl Mater Interfaces, 2021, 13(22): 25727-25737. DOI: 10.1021/acsami.1c04737. doi:10.1021/acsami.1c04737 |
[25] | Varshavi D, Varshavi D, McCarthy N, et al. Metabonomics study of the effects of single copy mutant KRAS in the presence or absence of WT allele using human HCT116 isogenic cell lines[J]. Metabolomics, 2021, 17(12): 104. DOI: 10.1007/s11306-021-01852-w. doi:10.1007/s11306-021-01852-wpmid:34822010 |
[26] | Budinger GRS, Kohanski RA, Gan W, et al. The intersection of aging biology and the pathobiology of lung diseases: a joint NHLBI/NIA workshop[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(11): 1492-1500. DOI: 10.1093/gerona/glx090. doi:10.1093/gerona/glx090 |
[27] | Tang Y, Chen Z, Fang Z, et al. Multi-omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease[J]. J Breath Res, 2021, 15(4): 10. DOI: 10.1088/1752-7163/ac15ea. doi:10.1088/1752-7163/ac15ea |
[28] | Wu WS, Wu HY, Wang PH, et al. LCMD: Lung Cancer Metabolome Database[J]. Comput Struct Biotechnol J, 2022, 20: 65-78. DOI: 10.1016/j.csbj.2021.12.002. doi:10.1016/j.csbj.2021.12.002 |
[29] | Reichard CA, Naelitz BD, Wang Z, et al. Gut microbiome-dependent metabolic pathways and risk of lethal prostate cancer: prospective analysis of a PLCO cancer screening trial cohort[J]. Cancer Epidemiol Biomarkers Prev, 2022, 31(1): 192-199. DOI: 10.1158/1055-9965.EPI-21-0766. doi:10.1158/1055-9965.EPI-21-0766 |
[30] | Cui L, Zheng D, Lee YH, et al. Metabolomics investigation reveals metabolite mediators associated with acute lung injury and repair in a murine model of influenza pneumonia[J]. Sci Rep, 2016, 6: 26076. DOI: 10.1038/srep26076. doi:10.1038/srep26076 |
[1] | 谢宇, 郑胜男, 黄明敏, 郭爱斌, 尹震宇, 林永娟.基于脑脊液药代动力学的培美曲塞应用于肺腺癌软脑膜转移患者鞘内注射化疗的临床研究[J]. 国际肿瘤学杂志, 2023, 50(10): 585-591. |
[2] | 李杨仪, 龚龑, 谢丛华.SAMHD1抑制肺腺癌细胞中PD-L1表达的研究[J]. 国际肿瘤学杂志, 2022, 49(11): 658-664. |
[3] | 周丽亚, 李小利, 曹子肖, 向俊馨, 刘佳慧, 夏雪梅, 李殿明.白蛋白结合型紫杉醇与培美曲塞分别联合顺铂治疗驱动基因阴性晚期肺腺癌的临床观察[J]. 国际肿瘤学杂志, 2021, 48(10): 596-601. |
[4] | 张贝, 王叶, 胡隽, 李妹, 王君, 穆允凤, 杨博.肺部转移性腺癌及鳞状细胞癌非典型MSCT多形性表现[J]. 国际肿瘤学杂志, 2021, 48(10): 591-595. |
[5] | 樊阳阳, 王影, 袁峰, 杜善平, 贺荣荣, 加燕.MALAT1靶向miR-142-3p在卵巢癌化疗耐药中的机制研究[J]. 国际肿瘤学杂志, 2020, 47(2): 82-89. |
[6] | 郭嘉漪, 章龙珍, 杨成喜.瘦素、雌激素及其受体与肺腺癌临床相关性研究[J]. 国际肿瘤学杂志, 2015, 42(8): 649-. |
[7] | 金福军, 冉广汉.代谢组学在卵巢癌中的应用研究进展[J]. 国际肿瘤学杂志, 2013, 40(8): 702-704. |
[8] | 季青.MALAT1、COX-2、β-catenin、MMP-3、MMP-9等基因在结直肠癌发生发展中的意义[J]. 国际肿瘤学杂志, 2012, 39(6): 477-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||