国际肿瘤学杂志››2022,Vol. 49››Issue (7): 420-424.doi:10.3760/cma.j.cn371439-20220429-00080
费文静1, 王文保2, 谢欢欢3, 闫婧2, 杨觅1,2()
收稿日期:
2022-04-29修回日期:
2022-06-07出版日期:
2022-07-08发布日期:
2022-09-19通讯作者:
杨觅 E-mail:yangmi@nju.edu.cnFei Wenjing1, Wang Wenbao2, Xie Huanhuan3, Yan Jing2, Yang Mi1,2()
Received:
2022-04-29Revised:
2022-06-07Online:
2022-07-08Published:
2022-09-19Contact:
Yang Mi E-mail:yangmi@nju.edu.cn摘要:
小胶质细胞不同于巨噬细胞,具有独特的起源和作用。在胶质母细胞瘤中,小胶质细胞在调节肿瘤免疫状态、促进肿瘤血管生成、破坏血脑屏障及降低治疗敏感性等方面发挥了重要作用。因而在胶质母细胞瘤的放疗、化疗、免疫治疗中联合针对小胶质细胞的疗法也已成为具有临床前景的治疗方式。
费文静, 王文保, 谢欢欢, 闫婧, 杨觅. 胶质母细胞瘤相关小胶质细胞研究现状[J]. 国际肿瘤学杂志, 2022, 49(7): 420-424.
Fei Wenjing, Wang Wenbao, Xie Huanhuan, Yan Jing, Yang Mi. Research status of glioblastoma-associated microglia[J]. Journal of International Oncology, 2022, 49(7): 420-424.
[1] | Wake H, Moorhouse AJ, Miyamoto A, et al. Microglia: actively surveying and shaping neuronal circuit structure and function[J]. Trends Neurosci, 2013, 36(4): 209-217. DOI: 10.1016/j.tins.2012.11.007. doi:10.1016/j.tins.2012.11.007 |
[2] | Stoessel MB, Majewska AK. Little cells of the little brain: microglia in cerebellar development and function[J]. Trends Neurosci, 2021, 44(7): 564-578. DOI: 10.1016/j.tins.2021.04.001. doi:10.1016/j.tins.2021.04.001pmid:33933255 |
[3] | Gosselin D, Skola D, Coufal NG, et al. An environment-dependent transcriptional network specifies human microglia identity[J]. Science, 2017, 356(6344): eaal3222. DOI: 10.1126/science.aal3222. doi:10.1126/science.aal3222 |
[4] | Brandenburg S, Blank A, Bungert AD, et al. Distinction of microglia and macrophages in glioblastoma: close relatives, different tasks?[J]. Int J Mol Sci, 2020, 22(1): 194. DOI: 10.3390/ijms22010194. doi:10.3390/ijms22010194 |
[5] | Haage V, Semtner M, Vidal RO, et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma[J]. Acta Neuropathol Commun, 2019, 7(1): 20. DOI: 10.1186/s40478-019-0665-y. doi:10.1186/s40478-019-0665-y |
[6] | Matias D, Dubois LG, Pontes B, et al. GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signa-ling[J]. Mol Neurobiol, 2019, 56(2): 1517-1530. DOI: 10.1007/s12035-018-1150-5. doi:10.1007/s12035-018-1150-5pmid:29948952 |
[7] | Serpe C, Monaco L, Relucenti M, et al. Microglia-derived small extracellular vesicles reduce glioma growth by modifying tumor cell metabolism and enhancing glutamate clearance through miR-124[J]. Cells, 2021, 10(8): 2066. DOI: 10.3390/cells10082066. doi:10.3390/cells10082066 |
[8] | McGranahan T, Therkelsen KE, Ahmad S, et al. Current state of immunotherapy for treatment of glioblastoma[J]. Curr Treat Options Oncol, 2019, 20(3): 24. DOI: 10.1007/s11864-019-0619-4. doi:10.1007/s11864-019-0619-4 |
[9] | Henrik Heiland D, Ravi VM, Behringer SP, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma[J]. Nat Commun, 2019, 10(1): 2541. DOI: 10.1038/s41467-019-10493-6. doi:10.1038/s41467-019-10493-6pmid:31186414 |
[10] | Qian J, Luo F, Yang J, et al. TLR2 promotes glioma immune evasion by downregulating MHC class Ⅱ molecules in microglia[J]. Cancer Immunol Res, 2018, 6(10): 1220-1233. DOI: 10.1158/2326-6066.CIR-18-0020. doi:10.1158/2326-6066.CIR-18-0020 |
[11] | Chang CY, Jeon SB, Yoon HJ, et al. Glial TLR2-driven innate immune responses and CD8+T cell activation against brain tumor[J]. Glia, 2019, 67(6): 1179-1195. DOI: 10.1002/glia.23597. doi:10.1002/glia.23597 |
[12] | Dumas AA, Pomella N, Rosser G, et al. Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment[J]. EMBO J, 2020, 39(15): e103790. DOI: 10.15252/embj.2019103790. doi:10.15252/embj.2019103790 |
[13] | Lisi L, Ciotti GMP, Chiavari M, et al. Phospho-mTOR expression in human glioblastoma microglia-macrophage cells[J]. Neurochem Int, 2019, 129: 104485. DOI: 10.1016/j.neuint.2019.104485. doi:10.1016/j.neuint.2019.104485 |
[14] | Turkowski K, Brandenburg S, Mueller A, et al. VEGF as a modulator of the innate immune response in glioblastoma[J]. Glia, 2018, 66(1): 161-174. DOI: 10.1002/glia.23234. doi:10.1002/glia.23234pmid:28948650 |
[15] | Brandenburg S, Müller A, Turkowski K, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors[J]. Acta Neuropathol, 2016, 131(3): 365-378. DOI: 10.1007/s00401-015-1529-6. doi:10.1007/s00401-015-1529-6pmid:26718201 |
[16] | Haruwaka K, Ikegami A, Tachibana Y, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation[J]. Nat Commun, 2019, 10(1): 5816. DOI: 10.1038/s41467-019-13812-z. doi:10.1038/s41467-019-13812-z |
[17] | Couto M, Coelho-Santos V, Santos L, et al. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway[J]. J Cell Physiol, 2019, 234(11): 19750-19760. DOI: 10.1002/jcp.28575. doi:10.1002/jcp.28575 |
[18] | Litak J, Mazurek M, Grochowski C, et al. PD-L1/PD-1 axis in glioblastoma multiforme[J]. Int J Mol Sci, 2019, 20(21): 5347. DOI: 10.3390/ijms20215347. doi:10.3390/ijms20215347 |
[19] | Jenkinson MD, Santarius T, Zadeh G, et al. Atypical meningio-mais it time to standardize surgical sampling techniques?[J]. Neuro Oncol, 2017, 19(3): 453-454. DOI: 10.1093/neuonc/now245. doi:10.1093/neuonc/now245 |
[20] | Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma[J]. Nat Med, 2019, 25(3): 470-476. DOI: 10.1038/s41591-018-0339-5. doi:10.1038/s41591-018-0339-5pmid:30742120 |
[21] | Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial[J]. JAMA Oncol, 2020, 6(7): 1003-1010. DOI: 10.1001/jamaoncol.2020.1024. doi:10.1001/jamaoncol.2020.1024pmid:32437507 |
[22] | Liu X, Wu X, Wang Y, et al. CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway[J]. Oncol Res, 2019, 27(4): 415-422. DOI: 10.3727/096504018X15155538502359. doi:10.3727/096504018X15155538502359 |
[23] | Hu J, Xiao Q, Dong M, et al. Glioblastoma immunotherapy targe-ting the innate immune checkpoint CD47-SIRPα axis[J]. Front Immunol, 2020, 11: 593219. DOI: 10.3389/fimmu.2020.593219. doi:10.3389/fimmu.2020.593219 |
[24] | Hutter G, Theruvath J, Graef CM, et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma[J]. Proc Natl Acad Sci U S A, 2019, 116(3): 997-1006. DOI: 10.1073/pnas.1721434116. doi:10.1073/pnas.1721434116 |
[25] | Prionisti I, Bühler LH, Walker PR, et al. Harnessing microglia and macrophages for the treatment of glioblastoma[J]. Front Pharmacol, 2019, 10: 506. DOI: 10.3389/fphar.2019.00506. doi:10.3389/fphar.2019.00506pmid:31231208 |
[26] | Menzel F, Kaiser N, Haehnel S, et al. Impact of X-irradiation on microglia[J]. Glia, 2018, 66(1): 15-33. DOI: 10.1002/glia.23239. doi:10.1002/glia.23239 |
[27] | Osman AM, Sun Y, Burns TC, et al. Radiation triggers a dynamic sequence of transient microglial alterations in juvenile brain[J]. Cell Rep, 2020, 31(9): 107699. DOI: 10.1016/j.celrep.2020.107699. doi:10.1016/j.celrep.2020.107699 |
[28] | Okonogi N, Suzuki Y, Sato H, et al. Combination therapy of intravenously injected microglia and radiation therapy prolongs survival in a rat model of spontaneous malignant glioma[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3): 601-608. DOI: 10.1016/j.ijrobp.2018.06.018. doi:10.1016/j.ijrobp.2018.06.018 |
[29] | Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment[J]. Cancer Cell, 2017, 32(1): 42-56.e6. DOI: 10.1016/j.ccell.2017.06.003. doi:10.1016/j.ccell.2017.06.003 |
[30] | Acharya MM, Green KN, Allen BD, et al. Elimination of microglia improves cognitive function following cranial irradiation[J]. Sci Rep, 2016, 6: 31545. DOI: 10.1038/srep31545. doi:10.1038/srep31545 |
[31] | Foray C, Valtorta S, Barca C, et al. Imaging temozolomide-induced changes in the myeloid glioma microenvironment[J]. Theranostics, 2021, 11(5): 2020-2033. DOI: 10.7150/thno.47269. doi:10.7150/thno.47269 |
[32] | Li J, Kaneda MM, Ma J, et al. PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response[J]. Proc Natl Acad Sci U S A, 2021, 118(16): e2009290118. DOI: 10.1073/pnas.2009290118. doi:10.1073/pnas.2009290118 |
[1] | 韩晓宇, 何珺, 万崇华, 罗家洪, 白刚, 张蒋惠, 孟琼.癌症患者生命质量测定量表体系之脑肿瘤量表QLICP-BN的测量学评价[J]. 国际肿瘤学杂志, 2021, 48(3): 143-149. |
[2] | 于兰, 张小涛, 刘丽, 韩晓娜.贝伐珠单抗在恶性脑水肿治疗中的应用[J]. 国际肿瘤学杂志, 2017, 44(1): 41-44. |
[3] | 王志芬, 乔学英.脑转移瘤的放射治疗[J]. 国际肿瘤学杂志, 2013, 40(6): 437-440. |
[4] | 李明焕, 孔莉, 于金明.胶质母细胞瘤放射治疗靶区设计现状与思考[J]. 国际肿瘤学杂志, 2013, 40(3): 193-195. |
[5] | 李燕, 白鹰.小胶质细胞在脑转移癌中的作用[J]. 国际肿瘤学杂志, 2012, 39(7): 513-515. |
[6] | 张安玲, 王坤, 王广秀, 等.下调miR-93表达抑制人脑胶质瘤细胞生长和侵袭的研究[J]. 国际肿瘤学杂志, 2012, 39(1): 68-72. |
[7] | 洪婷婷, 华东.含氮双磷酸盐的抗肿瘤作用[J]. 国际肿瘤学杂志, 2011, 38(4): 257-260. |
[8] | 李伟, 龙晚生, 罗学毛, 等.弥散张量成像在脑肿瘤中的应用[J]. 国际肿瘤学杂志, 2011, 38(10): 797-800. |
[9] | 曹秀娟, 郝俊芳.高分级脑胶质瘤术后放射治疗[J]. 国际肿瘤学杂志, 2011, 38(1): 27-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||