国际肿瘤学杂志››2022,Vol. 49››Issue (11): 658-664.doi:10.3760/cma.j.cn371439-20220427-00130
收稿日期:
2022-04-27修回日期:
2022-09-20出版日期:
2022-11-08发布日期:
2022-12-06通讯作者:
谢丛华 E-mail:chxie_65@whu.edu.cn基金资助:
Li Yangyi1, Gong Yan2, Xie Conghua1()
Received:
2022-04-27Revised:
2022-09-20Online:
2022-11-08Published:
2022-12-06Contact:
Xie Conghua E-mail:chxie_65@whu.edu.cnSupported by:
摘要:
目的探讨在肺腺癌中含SAM域和HD域蛋白1(SAMHD1)与程序性死亡配体-1(PD-L1)表达的相关性。方法通过在线数据库GEPIA和Kaplan-Meier Plotter分析SAMHD1在肺腺癌中的表达及对预后的影响。通过实时荧光定量PCR(qPCR)和蛋白质印迹法检测SAMHD1在多个肺腺癌细胞株中的表达。利用小干扰RNA转染及慢病毒感染技术分别对H1975、H1299及LLC细胞进行SAMHD1基因沉默,通过qPCR、蛋白质印迹法检测对照组、siSAMHD1-1组和siSAMHD1-2组肺腺癌细胞中PD-L1 mRNA及蛋白表达水平,用流式细胞术检测细胞膜PD-L1的表达水平。构建小鼠肺腺癌移植瘤模型,用免疫组织化学法检测对照组和shSAMHD1组移植瘤组织中PD-L1的表达。用CCK-8检测对照组、siSAMHD1-1组和siSAMHD1-2组肺腺癌细胞增殖活力。结果GEPIA数据库结果表明,SAMHD1 mRNA在肺腺癌中的表达较肺正常组织低(4.81±0.90vs.5.99±0.76,t=20.67,P<0.001)。SAMHD1高表达患者中位总生存期明显长于低表达患者(109.0个月vs.87.7个月,χ2=26.83,P=0.002)。A549、PC9、H1299和H1975细胞中SAMHD1 mRNA相对表达量分别为1.00±0.02、0.75±0.05、3.49±0.19和7.25±0.38(F=589.00,P<0.001),蛋白相对表达量分别为1.00±0.06、0.34±0.07、1.67±0.22和2.11±0.63(F=15.79,P=0.001)。H1975细胞中,对照组、siSAMHD1-1组和siSAMHD1-2组的PD-L1 mRNA相对表达水平分别为1.00±0.00、1.54±0.26、2.89±0.13(F=102.30,P<0.001),蛋白相对表达水平分别为1.00±0.01、1.50±0.10和1.52±0.33(F=6.65,P=0.030);H1299细胞中,3组的PD-L1 mRNA相对表达水平分别为1.00±0.08、1.63±0.03和2.14±0.03(F=368.80,P<0.001),蛋白相对表达水平分别为1.00±0.07、1.88±0.35和2.05±0.38(F=10.66,P=0.011),siSAMHD1-1组和siSAMHD1-2组PD-L1表达水平均高于对照组(均P<0.05)。流式细胞术结果表明,H1975细胞中,对照组、siSAMHD1-1组和siSAMHD1-2组膜PD-L1荧光强度分别为246.83±27.59、325.60±8.00和308.93±7.60(F=17.56,P=0.003);H1299细胞中,3组的荧光强度分别为959.00±6.25、1 084.33±7.64和1 085.33±21.22(F=86.74,P<0.001),siSAMHD1-1组和siSAMHD1-2组荧光强度均高于对照组(均P<0.05)。在小鼠移植瘤模型中,shSAMHD1组PD-L1的H-SCORE评分高于对照组(7.99±1.10vs.4.49±0.43,t=5.13,P=0.007)。H1975细胞中,对照组、siSAMHD1-1组和siSAMHD1-2组72 h细胞增殖活力分别为0.50±0.02、0.75±0.05和0.73±0.06(F=25.01,P=0.001);H1299细胞中,3组72 h细胞增殖活力分别为0.80±0.01、1.00±0.04和0.93±0.07(F=13.90,P=0.006),siSAMHD1-1组和siSAMHD1-2组细胞增殖活力均高于对照组(均P<0.05)。结论在肺腺癌中,沉默SAMHD1可以提高PD-L1的表达。
李杨仪, 龚龑, 谢丛华. SAMHD1抑制肺腺癌细胞中PD-L1表达的研究[J]. 国际肿瘤学杂志, 2022, 49(11): 658-664.
Li Yangyi, Gong Yan, Xie Conghua. SAMHD1 inhibits PD-L1 expression in lung adenocarcinoma cells[J]. Journal of International Oncology, 2022, 49(11): 658-664.
表2
各组肺腺癌细胞H1975和H1299中SAMHD1 mRNA和蛋白表达水平比较($\bar{x}\pm s$,n=3)"
组别 | SAMHD1 mRNA | SAMHD1蛋白 | |||
---|---|---|---|---|---|
H1975 | H1299 | H1975 | H1299 | ||
对照组 | 1.00±0.01 | 1.00±0.02 | 1.00±0.29 | 1.00±0.07 | |
siSAMHD1-1组 | 0.17±0.02a | 0.23±0.00a | 0.37±0.07a | 0.36±0.13a | |
siSAMHD1-2组 | 0.21±0.00a | 0.08±0.00a | 0.24±0.06a | 0.46±0.10a | |
F值 | 3 062.00 | 3 664.00 | 15.43 | 34.07 | |
P值 | <0.001 | <0.001 | 0.004 | <0.001 |
表3
各组肺腺癌细胞H1975和H1299中PD-L1 mRNA和蛋白表达水平比较($\bar{x}\pm s$,n=3)"
组别 | PD-L1 mRNA | PD-L1蛋白 | |||
---|---|---|---|---|---|
H1975 | H1299 | H1975 | H1299 | ||
对照组 | 1.00±0.00 | 1.00±0.08 | 1.00±0.01 | 1.00±0.07 | |
siSAMHD1-1组 | 1.54±0.26a | 1.63±0.03a | 1.50±0.10a | 1.88±0.35a | |
siSAMHD1-2组 | 2.89±0.13a | 2.14±0.03a | 1.52±0.33a | 2.05±0.38a | |
F值 | 102.30 | 368.80 | 6.65 | 10.66 | |
P值 | <0.001 | <0.001 | 0.030 | 0.011 |
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. doi:10.3322/caac.21660 |
[2] | Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454. DOI: 10.1038/nature25183. doi:10.1038/nature25183 |
[3] | Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer[J]. Mol Cancer, 2018, 17(1): 38. DOI: 10.1186/s12943-018-0777-1. doi:10.1186/s12943-018-0777-1 |
[4] | Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230): 124-128. DOI: 10.1126/science.aaa1348. doi:10.1126/science.aaa1348pmid:25765070 |
[5] | 马骏, 张红颖, 吴艾平, 等. 免疫检查点抑制剂在肺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2021, 48(11): 683-687. DOI: 10.3760/cma.j.cn371439-20201231-00135. doi:10.3760/cma.j.cn371439-20201231-00135 |
[6] | Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis[J]. JAMA Oncol, 2019, 5(8): 1195-1204. DOI: 10.1001/jamaoncol.2019.1549. doi:10.1001/jamaoncol.2019.1549 |
[7] | Zhang Z, Zheng L, Yu Y, et al. Involvement of SAMHD1 in dNTP homeostasis and the maintenance of genomic integrity and oncotherapy (review)[J]. Int J Oncol, 2020, 56(4): 879-888. DOI: 10.3892/ijo.2020.4988. doi:10.3892/ijo.2020.4988pmid:32319570 |
[8] | Rentoft M, Lindell K, Tran P, et al. Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance[J]. Proc Natl Acad Sci U S A, 2016, 113(17): 4723-4728. DOI: 10.1073/pnas.1519128113. doi:10.1073/pnas.1519128113pmid:27071091 |
[9] | Clifford R, Louis T, Robbe P, et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage[J]. Blood, 2014, 123(7): 1021-1031. DOI: 10.1182/blood-2013-04-490847. doi:10.1182/blood-2013-04-490847pmid:24335234 |
[10] | Felip E, Gutiérrez-Chamorro L, Gómez M, et al. Modulation of DNA damage response by SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase (SAMHD1) determines prognosis and treatment efficacy in different solid tumor types[J]. Cancers (Basel), 2022, 14(3): 641. DOI: 10.3390/cancers14030641. doi:10.3390/cancers14030641 |
[11] | Wu Y, Niu Y, Wu Y, et al. SAMHD1 can suppress lung adenocarcinoma progression through the negative regulation of STING[J]. J Thorac Dis, 2021, 13(1): 189-201. DOI: 10.21037/jtd-20-1889. doi:10.21037/jtd-20-1889pmid:33569199 |
[12] | Bonifati S, Daly MB, St Gelais C, et al. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells[J]. Virology, 2016, 495: 92-100. DOI: 10.1016/j.virol.2016.05.002. doi:10.1016/j.virol.2016.05.002pmid:27183329 |
[13] | Kodigepalli KM, Bonifati S, Tirumuru N, et al. SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis[J]. Cell Cycle, 2018, 17(9): 1124-1137. DOI: 10.1080/15384101.2018.1480218. doi:10.1080/15384101.2018.1480218pmid:29911928 |
[14] | Daddacha W, Koyen AE, Bastien AJ, et al. SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination[J]. Cell Rep, 2017, 20(8): 1921-1935. DOI: 10.1016/j.celrep.2017.08.008. doi:S2211-1247(17)31096-3pmid:28834754 |
[15] | Coquel F, Silva MJ, Técher H, et al. SAMHD1 acts at stalled replication forks to prevent interferon induction[J]. Nature, 2018, 557(7703): 57-61. DOI: 10.1038/s41586-018-0050-1. doi:10.1038/s41586-018-0050-1 |
[16] | Coquel F, Neumayer C, Lin YL, et al. SAMHD1 and the innate immune response to cytosolic DNA during DNA replication[J]. Curr Opin Immunol, 2019, 56: 24-30. DOI: 10.1016/j.coi.2018.09.017. doi:S0952-7915(18)30050-5pmid:30292848 |
[17] | Laguette N, Sobhian B, Casartelli N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx[J]. Nature, 2011, 474(7353): 654-657. DOI: 10.1038/nature10117. doi:10.1038/nature10117 |
[18] | Park K, Ryoo J, Jeong H, et al. Aicardi-Goutières syndrome-asso-ciated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions[J]. PLoS Genet, 2021, 17(4): e1009523. DOI: 10.1371/journal.pgen.1009523. doi:10.1371/journal.pgen.1009523 |
[19] | Garcia-Diaz A, Shin DS, Moreno BH, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression[J]. Cell Rep, 2017, 19(6): 1189-1201. DOI: 10.1016/j.celrep.2017.04.031. doi:S2211-1247(17)30525-9pmid:28494868 |
[20] | Herold N, Rudd SG, Ljungblad L, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies[J]. Nat Med, 2017, 23(2): 256-263. DOI: 10.1038/nm.4265. doi:10.1038/nm.4265pmid:28067901 |
[21] | Li Z, Huan C, Wang H, et al. TRIM21-mediated proteasomal degradation of SAMHD1 regulates its antiviral activity[J]. EMBO Rep, 2020, 21(1): e47528. DOI: 10.15252/embr.201847528. doi:10.15252/embr.201847528 |
[1] | 谢宇, 郑胜男, 黄明敏, 郭爱斌, 尹震宇, 林永娟.基于脑脊液药代动力学的培美曲塞应用于肺腺癌软脑膜转移患者鞘内注射化疗的临床研究[J]. 国际肿瘤学杂志, 2023, 50(10): 585-591. |
[2] | 林永娟, 李会颖, 尹震宇, 郭爱斌, 谢宇.基于非靶标代谢组学的肺腺癌软脑膜转移患者脑脊液代谢特征研究[J]. 国际肿瘤学杂志, 2022, 49(7): 390-399. |
[3] | 周丽亚, 李小利, 曹子肖, 向俊馨, 刘佳慧, 夏雪梅, 李殿明.白蛋白结合型紫杉醇与培美曲塞分别联合顺铂治疗驱动基因阴性晚期肺腺癌的临床观察[J]. 国际肿瘤学杂志, 2021, 48(10): 596-601. |
[4] | 张贝, 王叶, 胡隽, 李妹, 王君, 穆允凤, 杨博.肺部转移性腺癌及鳞状细胞癌非典型MSCT多形性表现[J]. 国际肿瘤学杂志, 2021, 48(10): 591-595. |
[5] | 樊阳阳, 王影, 袁峰, 杜善平, 贺荣荣, 加燕.MALAT1靶向miR-142-3p在卵巢癌化疗耐药中的机制研究[J]. 国际肿瘤学杂志, 2020, 47(2): 82-89. |
[6] | 郭嘉漪, 章龙珍, 杨成喜.瘦素、雌激素及其受体与肺腺癌临床相关性研究[J]. 国际肿瘤学杂志, 2015, 42(8): 649-. |
[7] | 季青.MALAT1、COX-2、β-catenin、MMP-3、MMP-9等基因在结直肠癌发生发展中的意义[J]. 国际肿瘤学杂志, 2012, 39(6): 477-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||