国际肿瘤学杂志››2024,Vol. 51››Issue (7): 464-467.doi:10.3760/cma.j.cn371439-20231008-00076
收稿日期:
2023-10-08修回日期:
2024-02-16出版日期:
2024-07-08发布日期:
2024-08-14通讯作者:
张俊,Email:dr.junzhang@njmu.edu.cnReceived:
2023-10-08Revised:
2024-02-16Online:
2024-07-08Published:
2024-08-14Contact:
Zhang Jun, Email:dr.junzhang@njmu.edu.cn摘要:
分化型甲状腺癌总体预后良好,但仍有少部分患者会出现局部复发和远处转移,在初始或治疗过程中丧失摄碘能力,成为放射性碘难治性分化型甲状腺癌(RAIR-DTC),预后较差。RAIR-DTC患者治疗方法有限,且效果欠佳,通过药物促进再分化使RAIR-DTC恢复摄碘能力是治疗的重要策略之一。
刘晶, 张俊. 放射性碘难治性分化型甲状腺癌再分化治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 464-467.
Liu Jing, Zhang Jun. Progress in the study of redifferentiation therapy for radioactive iodine-refractory differentiated thyroid carcinoma[J]. Journal of International Oncology, 2024, 51(7): 464-467.
[1] | Haymart MR. Progress and challenges in thyroid cancer management[J].Endocr Pract,2021,27(12): 1260-1263. DOI:10.1016/j.eprac.2021.09.006. |
[2] | Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J].Ann Oncol,2019,30(12): 1856-1883. DOI:10.1093/annonc/mdz400. pmid:31987292 |
[3] | Liu JR, Liu YQ, Lin YS, et al. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy[J].Endocrinol Metab (Seoul),2019,34(3): 215-225. DOI:10.3803/EnM.2019.34.3.215. |
[4] | Singh A, Ham J, Po JW, et al. The genomic landscape of thyroid cancer tumourigenesis and implications for immunotherapy[J].Cells,2021,10(5): 1082. DOI:10.3390/cells10051082. |
[5] | Riesco-Eizaguirre G, Santisteban P, De la Vieja A. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues[J].Endocr Relat Cancer,2021,28(10): T141-T165. DOI:10.1530/ERC-21-0217. |
[6] | Cazarin J, Dupuy C, Pires de Carvalho D. Redox homeostasis in thyroid cancer: implications in Na+/I-symporter (NIS) regulation[J].Int J Mol Sci,2022,23(11): 35682803. DOI:10.3390/ijms23116129. |
[7] | Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS[J].Theranostics,2021,11(13): 6251-6277. DOI:10.7150/thno.57689. pmid:33995657 |
[8] | Hu JW, Yuan IJ, Mirshahidi S, et al. Thyroid carcinoma: phenotypic features, underlying biology and potential relevance for targeting therapy[J].Int J Mol Sci,2021,22(4): 1950. DOI:10.3390/ijms22041950. |
[9] | Cai X, Wang R, Tan J, et al. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer[J].Clin Transl Oncol,2021,23(12): 2403-2414. DOI:10.1007/s12094-021-02655-0. pmid:34100218 |
[10] | Dunn LA, Sherman EJ, Baxi SS, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J].J Clin Endocrinol Metab,2019,104(5): 1417-1428. DOI:10.1210/jc.2018-01478. pmid:30256977 |
[11] | Ho AL, Dedecjus M, Wirth LJ, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase Ⅲ, randomized, placebo-controlled trial (ASTRA)[J].J Clin Oncol,2022,40(17): 1870-1878. DOI:10.1200/JCO.21.00714. |
[12] | Jaber T, Waguespack SG, Cabanillas ME, et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine[J].J Clin Endocrinol Metab,2018,103(10): 3698-3705. DOI:10.1210/jc.2018-00612. pmid:30032208 |
[13] | Iravani A, Solomon B, Pattison DA, et al. Mitogen-activated protein kinase pathway inhibition for redifferentiation of radioiodine refractory differentiated thyroid cancer: an evolving protocol[J].Thyroid,2019,29(11): 1634-1645. DOI:10.1089/thy.2019.0143. pmid:31637953 |
[14] | Leboulleux S, Do Cao C, Zerdoud S, et al. A phase Ⅱ redifferentiation trial with dabrafenib-trametinib and131I in metastatic radioactive iodine refractory BRAF p.V600E-mutated differentiated thyroid cancer[J].Clin Cancer Res,2023,29(13): 2401-2409. DOI:10.1158/1078-0432.CCR-23-0046. |
[15] | Tchekmedyian V, Dunn L, Sherman E, et al. Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial[J].Thyroid,2022,32(3): 273-282. DOI:10.1089/thy.2021.0565. pmid:35045748 |
[16] | National Cancer Institute (NCI).Dabrafenib and lapatinib in treating patients with refractory thyroid cancer that cannot be removed by surgery[EB/OL]. (2023-09-20) [2023-12-21]. https://classic.clinicaltrials.gov/ct2/show/NCT01947023. |
[17] | Nikitski AV, Condello V, Divakaran SS, et al. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J].Thyroid,2023,33(4): 464-473. DOI:10.1089/thy.2022.0533. |
[18] | Song J, Qiu W, Deng X, et al. A somatic mutation of RasGRP3 decreases Na+/I-symporter expression in metastases of radioactive iodine-refractory thyroid cancer by stimulating the Akt signaling pathway[J].Am J Cancer Res,2018,8(9): 1847-1855. |
[19] | Hanna GJ, Busaidy NL, Chau NG, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase Ⅱ study[J].Clin Cancer Res,2018,24(7): 1546-1553. DOI:10.1158/1078-0432.CCR-17-2297. |
[20] | Zhang K, Li C, Liu J, et al. DNA methylation alterations as therapeutic prospects in thyroid cancer[J].J Endocrinol Invest,2019,42(4): 363-370. DOI:10.1007/s40618-018-0922-0. pmid:29992502 |
[21] | Fu H, Cheng L, Sa R, et al. Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbou-ring BRAFV600Eby synergistically decreasing global trimethylation of H3K27[J].J Cell Mol Med,2020,24(6): 3336-3345. DOI:10.1111/jcmm.15007. |
[22] | Wächter S, Damanakis AI, Elxnat M, et al. Epigenetic modifications in thyroid cancer cells restore NIS and radio-iodine uptake and promote cell death[J].J Clin Med,2018,7(4): 61. DOI:10.3390/jcm7040061. |
[23] | Groener JB, Gelen D, Mogler C, et al. BRAFV600Eand retinoic acid in radioiodine-refractory papillary thyroid cancer[J].Horm Metab Res,2019,51(1): 69-75. DOI:10.1055/a-0765-9078. |
[24] | Pak K, Shin S, Kim SJ, et al. Response of retinoic acid in patients with radioactive iodine-refractory thyroid cancer: a meta-analysis[J].Oncol Res Treat,2018,41(3): 100-104. DOI:10.1159/000484206. pmid:29485411 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[5] | 王子琪, 罗盼, 叶永英, 吴伟莉.甲状腺腺样囊性癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(3): 191-192. |
[6] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[7] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[8] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[9] | 张劲男, 刘邦卿, 李军, 刘晓辉.BHLHE40靶向HMGA2激活氧化磷酸化通路降低甲状腺癌细胞对顺铂敏感性的研究[J]. 国际肿瘤学杂志, 2023, 50(7): 398-406. |
[10] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[11] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[12] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[13] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[14] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[15] | 邓莉莉, 段星宇, 李保中.HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||