Journal of International Oncology››2016,Vol. 43››Issue (10): 779-782.doi:10.3760/cma.j.issn.1673-422X.2016.10.014
Previous ArticlesNext Articles
Yan Bing, Lu Ying, Zhang Chunying, Li Qing, Mao Jun, Li Lianhong
Online:
2016-10-08Published:
2016-09-07Contact:
Li Lianhong E-mail:lilianhong@dlmedu.edu.cnSupported by:
National Natural Science Foundation of China (81272430)
Yan Bing, Lu Ying, Zhang Chunying, Li Qing, Mao Jun, Li Lianhong. Roles of Hippo-TAZ signaling pathway in breast cancer and breast cancer stem cells[J]. Journal of International Oncology, 2016, 43(10): 779-782.
[1] Harvey KF, Zhang X, Thomas DM. The hippo pathway and human cancer[J]. Nat Rev Cancer, 2013, 13(4): 246-257. DOI: 10.1038/nrc3458. [2] Pan D. The hippo signaling pathway in development and cancer[J]. Dev Cell, 2010, 19(4): 491-505. DOI: 10.1016/j.devcel.2010.09.011. [3] Xiao H, Jiang N, Zhou B, et al. TAZ regulates cell proliferation and epithelialmesenchymal transition of human hepatocellular carcinoma[J]. Cancer Sci, 2015, 106(2): 151-159. DOI: 10.1111/cas.12587. [4] Xie D, Cui J, Xia T, et al. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression[J]. Oncotarget, 2015, 6(34): 35949-35963. DOI: 10.18632/oncotarget.5772. [5] RomeroPérez L, GarciaSanz P, Mota A, et al. A role for the transducer of the Hippo pathway, TAZ, in the development of aggressive types of endometrial cancer[J]. Mod Pathol, 2015, 28(11): 1492-1503. DOI: 10.1038/modpathol.2015.102. [6] Cordenonsi M, Zanconato F, Azzolin L, et al. The hippo transducer TAZ confers cancer stem cellrelated traits on breast cancer cells[J]. Cell, 2011, 147(4): 759-772. DOI: 10.1016/j.cell.2011.09.048. [7] Azzolin L, Zanconato F, Bresolin S, et al. Role of TAZ as mediator of Wnt signaling[J]. Cell, 2012, 151(7): 1443-1456. DOI: 10.1016/j.cell.2012.11.027. [8] Lai D, Ho KC, Hao Y, et al. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF[J]. Cancer Res, 2011, 71(7): 2728-2738. DOI: 10.1158/00085472.CAN102711. [9] Zhao D, Zhi X, Zhou Z, et al. TAZ antagonizes the WWP1mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis[J]. Carcinogenesis, 2012, 33(1): 59-67. DOI: 10.1093/carcin/bgr242. [10] Chan SW, Lim CJ, Chen L, et al. The Hippo pathway in biological control and cancer development[J]. J Cell Physiol, 2011, 226(4): 928-939. DOI: 10.1002/jcp.22435. [11] Diepenbruck M, Waldmeier L, Ivanek R, et al. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelialmesenchymal transition[J]. J Cell Sci, 2014, 127(Pt 7): 1523-1536. DOI: 10.1242/jcs.139865. [12] Varelas X, SamavarchiTehrani P, Narimatsu M, et al. The crumbs complex couples cell density sensing to hippodependent control of the TGFβSMAD pathway[J]. Dev Cell, 2010, 19(6): 831-844. DOI: 10.1016/j.devcel.2010.11.012. [13] Wang Y, Zhou BP. Epithelialmesenchymal transition in breast cancer progression and metastasis[J]. Chin J Cancer, 2011, 30(9): 603-611. DOI: 10.5732/cjc.011.10226. [14] Huang W, Lv X, Liu C, et al. The Nterminal phosphodegron targets TAZ/WWTR1 protein for SCFβTrCPdependent degradation in response to phosphatidylinositol 3kinase inhibition[J]. J Biol Chem, 2012, 287(31): 26245-26253. DOI: 10.1074/jbc.M112.382036. [15] Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells[J]. Oncogene, 2015, 34(6): 681-690. DOI: 10.1038/onc.2014.5. [16] Mi W, Lin Q, Childress C, et al. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration[J]. Oncogene, 2015, 34(24): 3095-3106. DOI: 10.1038/onc.2014.251. [17] Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis[J]. Clin Cancer Res, 2013, 19(18): 4925-4930. DOI: 10.1158/10780432.CCR123172. [18] Zanconato F, Forcato M, Battilana G, et al. Genomewide association between YAP/TAZ/TEAD and AP1 at enhancers drives oncogenic growth[J]. Nat Cell Biol, 2015, 17(9): 1218-1227. DOI: 10.1038/ncb3216. [19] Yang N, Morrison CD, Liu P, et al. TAZ induces growth factorindependent proliferation through activation of EGFR ligand amphiregulin[J]. Cell Cycle, 2012, 11(15): 2922-2930. DOI: 10.4161/cc.21386. [20] Ehmer U, Sage J. Control of proliferation and cancer growth by the Hippo signaling pathway[J]. Mol Cancer Res, 2016, 14(2):127-140. DOI: 10.1158/15417786.MCR150305. [21] Hiemer SE, Szymaniak AD, Varelas X. The transcriptional regulators TAZ and YAP direct transforming growth factor βinduced tumorigenic phenotypes in breast cancer cells[J]. J Biol Chem, 2014, 289(19): 13461-13474. DOI: 10.1074/jbc.M113.529115. [22] Keller PJ, Arendt LM, Skibinski A, et al. Defining the cellular precursors to human breast cancer[J]. Proc Natl Acad Sci USA, 2012, 109(8): 2772-2777. DOI: 10.1073/pnas.1017626108. [23] Lu Y, Ma W, Mao J, et al. Salinomycin exerts anticancer effects on human breast carcinoma MCF7 cancer stem cells via modulation of Hedgehog signaling[J]. Chem Biol Interact, 2015, 228(228): 100-107. DOI: 10.1016/j.cbi.2014.12.002. [24] Lai D, VisserGrieve S, Yang X. Tumour suppressor genes in chemotherapeutic drug response[J]. Biosci Rep, 2012, 32(4): 361-374. DOI: 10.1042/BSR20110125. [25] Chang C, Goel HL, Gao H, et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells[J]. Genes Dev, 2015, 29(1): 1-6. DOI: 10.1101/gad.253682.114. [26] Luo M, Brooks M, Wicha MS. Epithelialmesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance[J]. Curr Pharm Des, 2015, 21(10): 1301-1310. [27] Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and TAZ by the mevalonate pathway[J]. Nat Cell Biol, 2014, 16(4): 357-366. DOI: 10.1038/ncb2936. [28] Fernández BG, Gaspar P, BrásPereira C, et al. ActinCapping protein and the hippo pathway regulate factin and tissue growth in drosophila[J]. Development, 2011, 138(11): 2337-2346. DOI: 10.1242/dev.063545. [29] Thomasy SM, Morgan JT, Wood JA, et al. Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells[J]. Exp Eye Res, 2013, 113: 66-73. DOI: 10.1016/j.exer.2013.05.014. |
[1] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu.Advances in immunotherapy for breast cancer[J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Chen Boguang, Wang Sugui, Zhang Yongjie.Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer[J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong.Breast microbiota and breast cancer: present and future[J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Wang Jing, Xu Wenting.Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm[J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[7] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying.Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients[J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[8] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng.Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway[J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[9] | Pan Shulan, Liu Chang, He Ping.Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer[J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[10] | Wang Wende, Zeng De.Research progress on the mechanism of endocrine therapy resistance for breast cancer[J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[11] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai.Research progress on the application of combining radiotherapy and systemic therapy in breast cancer[J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[12] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong.Research progress on targeted therapy of breast cancer with low expression of HER2[J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[13] | Zhou Ting, Xu Shaohua, Mei Lin.Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer[J]. Journal of International Oncology, 2023, 50(3): 144-149. |
[14] | Li Lixi, Zhang Di, Luo Yang, Ma Fei.Clinical application of PARP inhibitors in breast cancer[J]. Journal of International Oncology, 2023, 50(2): 91-96. |
[15] | Geng Rui, Ma Junqiang, Guo Qiang, Niu Zhaofeng.Tendency of elderly patients with breast cancer to choose comprehensive treatment mode and its influencing factors[J]. Journal of International Oncology, 2023, 50(11): 650-654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||