Journal of International Oncology››2018,Vol. 45››Issue (6): 355-357.doi:10.3760/cma.j.issn.1673-422X.2018.06.008
Previous ArticlesNext Articles
Shen Kai, Shao Fang, Feng Tongbao, Qi Chunjian
Received:
2018-03-13Online:
2018-06-08Published:
2018-07-31Contact:
Qi Chunjian E-mail:qichunjian@njmu.edu.cnSupported by:
National Natural Science Foundation of China (31501942, 31601156)
Shen Kai, Shao Fang, Feng Tongbao, Qi Chunjian. Role of microRNA-373 in tumor[J]. Journal of International Oncology, 2018, 45(6): 355-357.
[1] Wei F, Cao C, Xu X, et al. Diverse functions of miR-373 in cancer[J]. J Transl Med, 2015, 13: 162. DOI: 10.1186/s12967-015-0523-z. [2] Zhang Y, Yang J, Cui X, et al. A novel epigenetic CREBmiR-373 axis mediates ZIP4induced pancreatic cancer growth[J]. EMBO Mol Med, 2013, 5(9): 1322-1334. DOI: 10.1002/emmm.201302507. [3] Meng X, Müller V, MildeLangosch K, et al. Diagnostic and prognostic relevance of circulating exosomal miR373, miR200a, miR200b and miR-200c in patients with epithelial ovarian cancer[J]. Oncotarget, 2016, 7(13): 16923-16935. DOI: 10.18632/oncotarget.7850. [4] Chen D, Dang BL, Huang JZ, et al. MiR-373 drives the epithelial to mesenchymal transition and metastasis via the miR373TXNIPHIF1αTWIST signaling axis in breast cancer[J]. Oncotarget, 2015, 6(32): 3270132712. DOI: 10.18632/oncotarget.4702. [5] Ding W, Fan XL, Xu X, et al. Epigenetic silencing of ITGA2 by miR-373 promotes cell migration in breast cancer[J]. PLoS One, 2015, 10(8): e0135128. DOI: 10.1371/journal.pone.0135128. [6] O′Day E, Lal A. MicroRnas and their target gene networks in breast cancer[J]. Breast Cancer Res, 2010, 12(2): 201. DOI: 10.1186/bcr2484. [7] Keklikoglou I, Koerner C, Schmidt C, et al. MicroRNA520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGFβ signaling pathways[J]. Oncogene, 2012, 31(37): 41504163. DOI: 10.1038/onc.2011.571. [8] Jing SY, Jing SQ, Liu LL, et al. Downexpression of miR373 predicts poor prognosis of glioma and could be a potential therapeutic target[J]. Eur Rev Med Pharmacol Sci, 2017, 21(10): 2421-2425. [9] Wei F, Wang Q, Su Q, et al. miR373 inhibits glioma cell U251 migration and invasion by downregulating CD44 and TGFBR2[J]. Cell Mol Neurobiol, 2016, 36(8): 1389-1397. DOI: 10.1007/s10571-016-0338-3. [10] Lu S, Zhu Q, Zhang Y, et al. Dualfunctions of miR373 and miR520c by differently regulating the activities of MMP2 and MMP9[J]. J Cell Physiol, 2015, 230(8): 1862-1870. DOI: 10.1002/jcp.24914. [11] Seol HS, Akiyama Y, Shimada S, et al. Epigenetic silencing of microRNA373 to epithelialmesenchymal transition in nonsmall cell lung cancer through IRAK2 and LAMP1 axes [J]. Cancer Lett, 2014, 353(2): 232-241. DOI: 10.1016/j.canlet.2014.07.019. [12] Wu W, He X, Kong J, et al. Mir373 affects human lung cancer cells′ growth and its Ecadherin expression[J]. Oncol Res, 2012, 20(4): 163-170. [13] Adi Harel S, Bossel BenMoshe N, Aylon Y, et al. Reactivation of epigenetically silenced miR512 and miR373 sensitizes lung cancer cells to cisplatin and restricts tumor growth[J]. Cell Death Differ, 2015, 22(8): 1328-1340. DOI: 10.1038/cdd.2014.221. [14] Wang L, Qu J, Zhou L, et al. MicroRNA-373 inhibits cell proliferation and invasion via targeting BRF2 in human nonsmall cell lung cancer A549 cell line[J]. Cancer Res Treat, 2017, In press. DOI: 10.4143/crt.2017.302. [15] Iczkowski KA. Cell adhesion molecule CD44: its functional roles in prostate cancer[J]. Am J Transl Res, 2010, 3(1): 1-7. [16] Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro[J]. Int J Clin Exp Pathol, 2009, 2(4): 361-369. [17] Walter BA, Valera VA, Pinto PA, et al. Comprehensive microRNA profiling of prostate cancer[J]. J Cancer, 2013, 4(5): 350-357. DOI: 10.7150/jca.6394. [18] Qiu X, Zhu J, Sun Y, et al. TR4 nuclear receptor increases prostate cancer invasion via decreasing the miR3733p expression to alter TGFβR2/p Smad3 signals[J]. Oncotarget, 2015, 6(17): 15397-15409. DOI: 10.18632/oncotarget.3778. [19] Hua Y, Chen H, Wang L, et al. Low serum miR373 predicts poor prognosis in patients with pancreatic cancer[J]. Cancer Biomark, 2017, 20(1): 95-100. DOI: 10.3233/CBM-170231. [20] Nakata K, Ohuchida K, Mizumoto K, et al. Micro RNA373 is downregulated in pancreatic cancer and inhibits cancer cell invasion[J]. Ann Surg Oncol, 2014, 21 Suppl 4: S564-574. DOI: 10.1245/s10434-014-3676-8. [21] Chen YJ, Luo J, Yang GY, et al. Mutual regulation between microRNA-373 and methylCpGbinding domain protein 2 in hilar cholangiocarcinoma [J]. World J Gastroenterol, 2012, 18(29): 3849-3861. DOI: 10.3748/wjg.v18.i29.3849. [22] Chen Y, Gao W, Luo J, et al. MethylCpG binding protein MBD2 is implicated in methylationmediated suppression of miR-373 in hilar cholangiocarcinoma[J]. Oncol Rep, 2011, 25(2): 443-451. DOI: 10.3892/or.2010.1089. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua.Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer[J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing.Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients[J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang.Role of PFDN and its subunits in tumorigenesis and tumor development[J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun.Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei.Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm[J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin.Study on the clinical relationship between inflammatory burden index and gastric cancer[J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||