Journal of International Oncology››2019,Vol. 46››Issue (5): 299-302.doi:10.3760/cma.j.issn.1673-422X.2019.05.010
Previous ArticlesNext Articles
Gu Sijia1, Sun Guozhuang2, Qiao Dawei3, Zhong Yi1, Kong Guimei2, Bu Ping3
Received:
2019-04-16Online:
2019-05-08Published:
2019-06-14Contact:
Bu Ping E-mail:boping@yzu.edu.cnSupported by:
National Natural Science Foundation of China (81673736); Graduate Student Scientific Research Innovation Project of Jiangsu Province of China (SJCX18_0808)
Gu Sijia, Sun Guozhuang, Qiao Dawei, Zhong Yi, Kong Guimei, Bu Ping. Hippo signaling pathway and colorectal cancer[J]. Journal of International Oncology, 2019, 46(5): 299-302.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492. [2] Zhang L, Cao F, Zhang G, et al. Trends in and predictions of colorectal cancer incidence and mortality in China from 1990 to 2025[R]. Front Oncol, 2019, 9: 98. DOI: 10.3389/fonc.2019.00098. [3] Plouffe SW, Lin KC, Moore JL, et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell[J]. J Biol Chem, 2018, 293(28): 11230-11240. DOI: 10.1074/jbc.RA118.002715. [4] Frankel NW, Lim WA. Building a stable relationship: Ensuring homeostasis among cell types within a tissue[J]. Cell, 2018, 172(4): 638-640. DOI: 10.1016/j.cell.2018.01.024. [5] Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration[J]. Exp Mol Med, 2018, 50(1): e423. DOI: 10.1038/emm.2017.205. [6] Moon S, Yeon Park S, Woo Park H. Regulation of the Hippo pathway in cancer biology[J]. Cell Mol Life Sci, 2018, 75(13): 2303-2319. DOI: 10.1007/s00018-018-2804-1. [7] Fang L, Teng H, Wang Y, et al. SET1Amediated monomethylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis[J]. Cancer Cell, 2018, 34(1): 103-118. DOI: 10.1016/j.ccell.2018.06.002. [8] Wang F, Wang B, Long J, et al. Identification of candidate target genes for endometrial cancer, such as ANO1, using weighted gene co expression network analysis[J]. Exp Ther Med, 2019, 17(1): 298-306. DOI: 10.3892/etm.2018.6965. [9] Dehghanian F, Hojati Z, Hosseinkhan N, et al. Reconstruction of the genomescale coexpression network for the Hippo signaling pathway in colorectal cancer[J]. Comput Biol Med, 2018, 99: 76-84. DOI: 10.1016/j.compbiomed.2018.05.023. [10] Gibault F, Sturbaut M, Bailly F, et al. Targeting transcriptional enhanced associate domains (TEADs)[J]. J Med Chem, 2018, 61(12): 5057-5072. DOI: 10.1021/acs.jmedchem.7b00879. [11] Wang X, Sun D, Tai J, et al. TFAP2C promotes stemness and chemotherapeutic resistance in colorectal cancer via inactivating hippo signaling pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 27. DOI: 10.1186/s13046-018-0683-9. [12] Ou C, Sun Z, Li S, et al. Dual roles of yesassociated protein (YAP) in colorectal cancer[J]. Oncotarget, 2017, 8(43): 75727-75741. DOI: 10.18632/oncotarget.20155. [13] Poma AM, Torregrossa L, Bruno R, et al. Hippo pathway affects survival of cancer patients: extensive analysis of TCGA data and review of literature[J]. Sci Rep, 2018, 8(1): 10623. DOI: 10.1038/s41598-018-28928-3. [14] Zhang S, Wei Q, Yang Y, et al. Loss of Yesassociated protein represents an aggressive subtype of colorectal cancer[J]. J Cancer, 2019, 10(3): 689-696. DOI: 10.7150/jca.28333. [15] Zhou Z, Zhang HS, Zhang ZG, et al. Loss of HACE1 promotes colorectal cancer cell migration via upregulation of YAP1[J]. J Cell Physiol, 2019, 234(6): 9663-9672. DOI: 10.1002/jcp.27653. [16] Pan Y, Tong JHM, Lung RWM, et al. RASAL2 promotes tumor progression through LATS2/YAP1 axis of hippo signaling pathway in colorectal cancer[J]. Mol Cancer, 2018, 17(1): 102. DOI: 10.1186/s12943-018-0853-6. [17] Wang Q, Gao X, Yu T, et al. REGγ controls Hippo signaling and reciprocal NF-κB YAP regulation to promote colon cancer[J]. Clin Cancer Res, 2018, 24(8): 2015-2025. DOI: 10.1158/1078-0432.CCR-17-2986. [18] Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants for colorectal cancer[J]. Nat Genet, 2019, 51(1): 76-87. DOI: 10.1038/s41588-018-0286-6. [19] Yang C, Xu W, Meng X, et al. SCC-S2 facilitates tumor proliferation and invasion via activating Wnt signaling and depressing Hippo signaling in colorectal cancer cells and predicts poor prognosis of patients[J]. J Histochem Cytochem, 2019, 67(1): 65-75. DOI: 10.1369/0022155418799957. [20] Yao P, Li Y, Shen W, et al. ANKHD1 silencing suppresses the proliferation, migration and invasion of CRC cells by inhibiting YAP1-induced activation of EMT[J]. Am J Cancer Res, 2018, 8(11): 2311-2324. [21] Eskandari E, Mahjoubi F, Motalebzadeh J. An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers[J]. Gene, 2018, 679: 150-159. DOI: 10.1016/j.gene.2018.09.003. [22] Song R, Gu D, Zhang L, et al. Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer[J]. Mol Carcinog, 2018, 57(11): 1608-1615. DOI: 10.1002/mc.22883. [23] Liu BS, Xia HW, Zhou S, et al. Inhibition of YAP reverses primary resistance to EGFR inhibitors in colorectal cancer cells[J]. Oncol Rep, 2018, 40(4): 2171-2182. DOI: 10.3892/or.2018.6630. [24] Yu M, Luo Y, Cong Z, et al. MicroRNA-590-5p inhibits intestinal inflammation by targeting YAP[J]. J Crohns Colitis, 2018, 12(8): 993-1004. DOI: 10.1093/ecco-jcc/jjy046. [25] Shen X, Sun X, Sun B, et al. ARRDC3 suppresses colorectal cancer progression through destabilizing the oncoprotein YAP[J]. FEBS Lett, 2018, 592(4): 599-609. DOI: 10.1002/1873-3468.12986. [26] Greenhough A, Bagley C, Heesom KJ, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis[J]. EMBO Mol Med, 2018, 10(11). pii: e8699. DOI: 10.15252/emmm.201708699. [27] Li Q, Qi F, Meng X, et al. Mst1 regulates colorectal cancer stress response via inhibiting Bnip3related mitophagy by activation of JNK/p53 pathway[J]. Cell Biol Toxicol, 2018, 34(4): 263-277. DOI: 10.1007/s10565-017-9417-6. [28] Deng X, Fang L. VGLL4 is a transcriptional cofactor acting as a novel tumor suppressor via interacting with TEADs[J]. Am J Cancer Res, 2018, 8(6): 932-943. [29] Toden S, Ravindranathan P, Gu J, et al. Oligomeric proanthocyanidins (OPCs) target cancer stemlike cells and suppress tumor organoid formation in colorectal cancer[J]. Sci Rep, 2018, 8(1): 3335. DOI: 10.1038/s41598-018-21478-8. [30] Unterer B, Wiesmann V, Gunasekaran M, et al. IFN-γ-response mediator GBP-1 represses human cell proliferation by inhibiting the Hippo signaling transcription factor TEAD[J]. Biochem J, 2018, 475(18): 2955-2967. DOI: 10.1042/BCJ20180123. [31] Theodosakis N, Langdon CG, Micevic G, et al. Inhibition of isoprenylation synergizes with MAPK blockade to prevent growth in treatment resistant melanoma, colorectal, and lung cancer[J]. Pigment Cell Melanoma Res, 2019, 32(2): 292-302. DOI: 10.1111/pcmr.12742. [32] Qian J, Fang D, Lu H, et al. Tanshinone ⅡA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1Hippo pathway[J]. Biomed Pharmacother, 2018, 108: 1658-1669. DOI: 10.1016/j.biopha.2018.09.170. |
[1] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[4] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[5] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan.Progress of ferroptosis-related mechanisms in osteosarcoma[J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[6] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[7] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan.Research progress on the histopathological growth patterns of colorectal liver metastasis[J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[8] | Huang Hui, Ding Jianghua.Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma[J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[9] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong.Expression and clinical significance of ASB6 in colorectal cancer tissues[J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[10] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai.Research progress on the application of combining radiotherapy and systemic therapy in breast cancer[J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[11] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong.Progress of PARP inhibitors in targeted therapy of small cell lung cancer[J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[12] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing.Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer[J]. Journal of International Oncology, 2023, 50(5): 268-273. |
[13] | Liu Bohan, Huang Junxing.Research progress of solute carriers related genes in malignant tumors[J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[14] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong.Research progress on targeted therapy of breast cancer with low expression of HER2[J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[15] | Huang Zhen, Zhang Caiyutian, Ke Shaobo, Shi Wei, Zhao Wensi, Chen Yongshun.Construction of postoperative prognosis model for patients with colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 157-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||