Journal of International Oncology››2020,Vol. 47››Issue (2): 93-97.doi:10.3760/cma.j.issn.1673-422X.2020.02.006
• Reviews •Previous ArticlesNext Articles
Received:
2019-10-22Revised:
2020-01-02Online:
2020-02-08Published:
2020-05-27Contact:
Zhou Shengyu E-mail:typhoonwho@126.comSupported by:
Zhou Shengyu. Research status of immune checkpoint inhibitors in the treatment of advanced malignant tumors with hyperprogressive diseases[J]. Journal of International Oncology, 2020, 47(2): 93-97.
[1] | Ferris RL, Blumenschein G Jr, Fayette J , et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016,375(19):1856-1867. DOI: 10.1056/NEJMoa 1602252. doi:10.1056/NEJMoa1602252 |
[2] | Borghaei H, Paz-Ares L, Horn L , et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015,373(17):1627-1639. DOI: 10.1056/NEJMoa 1507643. doi:10.1056/NEJMoa1507643 |
[3] | Motzer RJ, Escudier B, McDermott DF , et al. Nivolumab versus everolimus in advanced renal-cell carcinoma[J]. N Engl J Med, 2015,373(19):1803-1813. DOI: 10.1056/NEJMoa1510665. doi:10.1056/NEJMoa1510665 |
[4] | Champiat S, Ferrara R, Massard C , et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018,15(12):748-762. DOI: 10.1038/s41571-018-0111-2. doi:10.1038/s41571-018-0111-2 |
[5] | Champiat S, Dercle L, Ammari S , et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017,23(8):1920-1928. DOI: 10.1158/1078-0432.CCR-16-1741. |
[6] | Saâda-Bouzid E, Defaucheux C, Karabajakian A , et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017,28(7):1605-1611. DOI: 10.1093/annonc/mdx178. doi:10.1093/annonc/mdx178 |
[7] | Ferrara R, Mezquita L, Texier M , et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy[J]. JAMA Oncol, 2018,4(11):1543-1552. DOI: 10.1001/jamaoncol.2018.3676. doi:10.1001/jamaoncol.2018.3676 |
[8] | Kato S, Goodman A, Walavalkar V , et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017,23(15):4242-4250. DOI: 10.1158/1078-0432.CCR-16-3133. doi:10.1158/1078-0432.CCR-16-3133 |
[9] | Sasaki A, Nakamura Y, Mishima S , et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer[J]. Gastric Cancer, 2019,22(4):793-802. DOI: 10.1007/s10120-018-00922-8. doi:10.1007/s10120-018-00922-8 |
[10] | Funazo T, Nomizo T, Kim YH . Liver metastasis is associated with poor progression-free survival in patients with non-small cell lung cancer treated with nivolumab[J]. J Thorac Oncol, 2017,12(9):e140-e141. DOI: 10.1016/j.jtho.2017.04.027. doi:10.1016/j.jtho.2017.04.027 |
[11] | Weiss GJ, Beck J, Braun DP , et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy[J]. Clin Cancer Res, 2017,23(17):5074-5081. DOI: 10.1158/1078-0432.CCR-17-0231. doi:10.1158/1078-0432.CCR-17-0231 |
[12] | Zaretsky JM, Garcia-Diaz A, Shin DS , et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016 , 375(9):819-829. DOI: 10.1056/NEJMoa1604958. doi:10.1056/NEJMoa1604958 |
[13] | Koyama S, Akbay EA, Li YY , et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016,7:10501. DOI: 10.1038/ncomms10501. doi:10.1038/ncomms10501 |
[14] | Lo Russo G, Moro M, Sommariva M , et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade[J]. Clin Cancer Res, 2019,25(3):989-999. DOI: 10.1158/1078-0432.CCR-18-1390. doi:10.1158/1078-0432.CCR-18-1390 |
[15] | Adams TA, Vail PJ, Ruiz A , et al. Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer[J]. Mod Pathol, 2018,31(2):288-298. DOI: 10.1038/modpathol.2017.126. doi:10.1038/modpathol.2017.126 |
[16] | Kubota K, Moriyama M, Furukawa S , et al. CD163+CD204+tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma [J]. Sci Rep, 2017,7(1):1755. DOI: 10.1038/s41598-017-01661-z. doi:10.1038/s41598-017-01661-z |
[17] | Lamichhane P, Karyampudi L, Shreeder B , et al. IL10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer[J]. Cancer Res, 2017,77(23):6667-6678. DOI: 10.1158/0008-5472.CAN-17-0740. doi:10.1158/0008-5472.CAN-17-0740 |
[18] | Sun Z, Fourcade J, Pagliano O , et al. IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+T cells [J]. Cancer Res, 2015 , 75(8):1635-1644. DOI: 10.1158/0008-5472.CAN-14-3016. doi:10.1158/0008-5472.CAN-14-3016 |
[19] | Mantovani A, Sica A . Macrophages, innate immunity and cancer: balance, tolerance, and diversity[J]. Curr Opin Immunol, 2010,22(2):231-237. DOI: 10.1016/j.coi.2010.01.009. doi:10.1016/j.coi.2010.01.009 |
[20] | Spranger S, Spaapen RM, Zha Y , et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells Sci Transl Med, 2013, 5(200): 200ra116. DOI: 10.1126/scitranslmed.3006504. |
[21] | Engblom C, Pfirschke C, Pittet MJ . The role of myeloid cells in cancer therapies[J]. Nat Rev Cancer, 2016,16(7):447-462. DOI: 10.1038/nrc.2016.54. doi:10.1038/nrc.2016.54 |
[22] | Gao J, Shi LZ, Zhao H , et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA4 therapy[J]. Cell, 2016, 167(2):397-404. e9. DOI: 10.1016/j.cell.2016.08.069. doi:10.1016/j.cell.2016.08.069 |
[23] | Mandai M, Hamanishi J, Abiko K , et al. Dual faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity[J]. Clin Cancer Res, 2016,22(10):2329-2334. DOI: 10.1158/1078-0432.CCR-16-0224. doi:10.1158/1078-0432.CCR-16-0224 |
[24] | Huang RY, Francois A, McGray AR , et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer[J]. Oncoimmunology, 2016,6(1):e1249561. DOI: 10.1080/2162402X.2016.1249561. doi:10.1080/2162402X.2016.1249561 |
[25] | Kahan SM, Wherry EJ, Zajac AJ . T cell exhaustion during persistent viral infections[J]. Virology. 2015, 479-480:180-193. DOI: 10.1016/j.virol.2014.12.033. doi:10.1016/j.virol.2014.12.033 |
[26] | Togasaki K, Sukawa Y, Kanai T , et al. Clinical efficacy of immune checkpoint inhibitors in the treatment of unresectable advanced or recurrent gastric cancer: an evidence-based review of therapies[J]. Onco Targets Ther, 2018,11:8239-8250. DOI: 10.2147/OTT.S152514. |
[27] | Barnaba V, Schinzari V . Induction, control, and plasticity of Treg cells: the immune regulatory network revised?[J]. Eur J Immunol, 2013,43(2):318-322. DOI: 10.1002/eji.201243265. |
[28] | Lowther DE, Goods BA, Lucca LE , et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas[J]. JCI Insight, 2016, 1(5). pii: e85935. DOI: 10.1172/jci.insight.85935. |
[29] | Ellestad KK, Thangavelu G, Ewen CL , et al. PD-1 is not required for natural or peripherally induced regulatory T cells: severe autoimmunity despite normal production of regulatory T cells[J]. Eur J Immunol, 2014 , 44(12):3560-3572. DOI: 10.1002/eji.201444688. |
[30] | Moorman JP, Wang JM, Zhang Y , et al. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection[J]. J Immunol, 2012,189(2):755-766. DOI: 10.4049/jimmunol.1200162. |
[31] | Nakamura K, Smyth MJ . Targeting cancer-related inflammation in the era of immunotherapy[J]. Immunol Cell Biol, 2017,95(4):325-332. DOI: 10.1038/icb.2016.126. |
[32] | Dulos J, Carven GJ, van Boxtel SJ , et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer[J]. J Immunother, 2012,35(2):169-178. DOI: 10.1097/CJI.0b013e318247a4e7. |
[33] | Koenen HJ, Smeets RL, Vink PM , et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells[J]. Blood, 2008,112(6):2340-2352. DOI: 10.1182/blood-2008-01-133967. |
[34] | Kargl J, Busch SE, Yang GH , et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer[J]. Nat Commun, 2017,8:14381. DOI: 10.1038/ncomms14381. |
[35] | Fabre J, Giustiniani J, Garbar C , et al. Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type[J]. Int J Mol Sci, 2016, 17(9). pii: E1433. DOI: 10.3390/ijms17091433. |
[36] | Dong Y, Sun Q, Zhang X . PD-1 and its ligands are important immune checkpoints in cancer[J]. Oncotarget, 2017,8(2):2171-2186. DOI: 10.18632/oncotarget.13895. |
[37] | 龙丽, 段赵宁, 蔡海贝 , 等. NFATc1对裸鼠上皮性卵巢癌移植瘤脉管生成的影响[J]. 中国病理生理杂志, 2016,32(2):193-200. DOI: 10.3969/j.issn.1000-4718.2016.02.001. |
[38] | Ratner L, Waldmann TA, Janakiram M , et al. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy[J]. N Engl J Med, 2018,378(20):1947-1948. DOI: 10.1056/NEJMc1803181. |
[39] | Du S, McCall N, Park K , et al. Blockade of tumor-expressed PD-1 promotes lung cancer growth[J]. Oncoimmunology, 2018,7(4):e1408747. DOI: 10.1080/2162402X.2017.1408747. |
[40] | Dong ZY, Zhong WZ, Zhang XC , et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma[J]. Clin Cancer Res, 2017,23(12):3012-3024. DOI: 10.1158/1078-0432. |
[41] | Mariathasan S, Turley SJ, Nickles D , et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018,554(7693):544-548. DOI: 10.1038/nature25501. |
[42] | Xiong D, Wang Y, Singavi AK , et al. Immunogenomic landscape contributes to hyperprogressive disease after anti-PD-1 immunotherapy for cancer[J]. iScience, 2018,9:258-277. DOI: 10.1016/j.isci.2018.10.021. |
[43] | Niknafs N, Kim D, Kim R , et al. MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures[J]. Hum Genet, 2013,132(11):1235-1243. DOI: 10.1007/s00439-013-1325-0. |
[44] | Gossage L, Eisen T, Maher ER . VHL, the story of a tumour suppressor gene[J]. Nat Rev Cancer, 2015,15(1):55-64. DOI: 10.1038/nrc3844. doi:10.1038/nrc3844 |
[45] | Kammerer-Jacquet SF, Crouzet L, Brunot A , et al. Independent association of PD-L1 expression with noninactivated VHL clear cell renal cell carcinoma-A finding with therapeutic potential[J]. Int J Cancer, 2017,140(1):142-148. DOI: 10.1002/ijc.30429. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua.Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer[J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing.Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients[J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang.Role of PFDN and its subunits in tumorigenesis and tumor development[J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun.Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua.Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy[J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[12] | Liu Jing, Liu Qin, Huang Mei.Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm[J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin.Study on the clinical relationship between inflammatory burden index and gastric cancer[J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||