Journal of International Oncology››2024,Vol. 51››Issue (3): 129-136.doi:10.3760/cma.j.cn371439-20231130-00021
• Original Articles •Previous ArticlesNext Articles
Ren Lu1,2, Xie Xiaoli2,3, Zhang Kun4, Wang Lijuan2,3,5()
Received:
2023-11-30Revised:
2024-01-15Online:
2024-03-08Published:
2024-04-10Contact:
Wang Lijuan, Email:
Supported by:
Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells[J]. Journal of International Oncology, 2024, 51(3): 129-136.
[1] | Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma[J].Nat Rev Dis Primers,2017,3: 17046. DOI:10.1038/nrdp.2017.46. pmid:28726797 |
[2] | 王盼盼, 朱登勤, 杨晓煜. 多发性骨髓瘤发病机制及治疗的研究进展[J].中国医学创新,2023,20(13): 164-168. DOI:10.3969/j.issn.1674-4985.2023.13.040. |
[3] | 卢静, 杜鹃. 多发性骨髓瘤靶向新药研究进展[J].药学进展,2022,46(6): 435-446. |
[4] | Solimando AG, Krebs M, Desantis V, et al. Breaking through multiple myeloma: a paradigm for a comprehensive tumor ecosystem targeting[J].Biomedicines,2023,11(7): 2087. DOI:10.3390/biomedici-nes11072087. |
[5] | Liu X, Cao J, Huang G, et al. Biological activities of artemisinin derivatives beyond malaria[J].Curr Top Med Chem,2019,19(3): 205-222. DOI:10.2174/1568026619666190122144217. pmid:30674260 |
[6] | Wang SJ, Gao Y, Chen H, et al. Dihydroartemisinin inactivates NF-κ B and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo[J].Cancer Lett,2010,293(1): 99-108. DOI:10.1016/j.canlet.2010.01.001. |
[7] | Li Y, Lu J, Chen Q, et al. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling[J].Arch Toxicol,2019,93(11): 3367-3383. DOI:10.1007/s00204-019-02579-3. pmid:31563988 |
[8] | 沈敬堃, 朱海涛, 梅珈彬, 等. 地高辛和他莫昔芬协同抑制乳腺癌MCF-7细胞的增殖、迁移和侵袭[J].中国药理学通报,2021,37(9): 1256-1263. DOI:10.3969/j.issn.1001-1978.2021.09.013. |
[9] | Mereu E, Abbo D, Paradzik T, et al. Euchromatic histone lysine methyltransferase 2 inhibition enhances carfilzomib sensitivity and overcomes drug resistance in multiple myeloma cell lines[J].Cancers (Basel),2023,15(8): 2199. DOI:10.3390/cancers15082199. |
[10] | Herndon TM, Deisseroth A, Kaminskas E, et al. Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma[J].Clin Cancer Res,2013,19(17): 4559-4563. DOI:10.1158/1078-0432.CCR-13-0755. pmid:23775332 |
[11] | He S, Tian W, Zhao J, Gong R, et al. Carfilzomib inhibits the proliferation and apoptosis of multiple myeloma cells by inhibiting STAT1/COX-2/iNOS signaling pathway[J].Transl Cancer Res,2022,11(1): 206-216. DOI:10.21037/tcr-21-2534. pmid:35261897 |
[12] | Salem K, Brown CO, Schibler J, et al. Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity[J].Exp Hematol,2013,41(2): 209-218. DOI:10.1016/j.exphem.2012.10.002. pmid:23063726 |
[13] | Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma[J].BMC Cancer,2018,18(1): 724. DOI:10.1186/s12885-018-4602-4. |
[14] | Gong Y, Gallis BM, Goodlett DR, et al. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines[J].Anticancer Res,2013,33(1): 123-132. pmid:23267137 |
[15] | Efferth T. Molecular pharmacology and pharmacogenomics of arte-misinin and its derivatives in cancer cells[J].Curr Drug Targets,2006,7(4): 407-421. DOI:10.2174/138945006776359412. pmid:16611029 |
[16] | Lucibello M, Adanti S, Antelmi E, et al. Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells[J].Oncotarget,2015,6(7): 5275-5291. DOI:10.18632/oncotarget.2971. pmid:25779659 |
[17] | Allegra A, Speciale A, Molonia MS, et al. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF- κ B pathways[J].Toxicol In Vitro,2018,47: 186-194. DOI:10.1016/j.tiv.2017.12.001. |
[18] | Ma Q, Liao H, Xu L, et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin[J].Chin Med,2020,15: 37. DOI:10.1186/s13020-020-00318-w. |
[19] | Kiraz Y, Adan A, Kartal Yandim M, et al. Major apoptotic mechanisms and genes involved in apoptosis[J].Tumour Biol,2016,37(7): 8471-8486. DOI:10.1007/s13277-016-5035-9. |
[20] | Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J].Nat Rev Cancer,2002,2(9): 647-656. DOI:10.1038/nrc883. pmid:12209154 |
[21] | Elmore S. Apoptosis: a review of programmed cell death[J].Toxicol Pathol,2007,35(4): 495-516. DOI:10.1080/01926230701320337. pmid:17562483 |
[22] | 陈光华, 魏莹, 舒波. 鱼腥草总黄酮调控PI3K/Akt信号通路诱导人乳腺癌细胞株MCF-7凋亡的实验研究[J].中国医院药学杂志,2020,40(4): 391-396. DOI:10.13286/j.1001-5213.2020.04.07. |
[23] | Li YN, Ning N, Song L, et al. Derivatives of deoxypodophyllotoxin induce apoptosis through Bcl-2/Bax proteins expression[J].Anticancer Agents Med Chem,2021,21(5): 611-620. DOI:10.2174/1871520620999200730160952. |
[24] | Li S, Wei P, Zhang B, et al. Apoptosis of lung cells regulated by mitochondrial signal pathway in crotonaldehyde-induced lung injury[J].Environ Toxicol,2020,35(11): 1260-1273. DOI:10.1002/tox.22991. pmid:32639093 |
[25] | Levine AJ. p53: 800 million years of evolution and 40 years of discovery[J].Nat Rev Cancer,2020,20(8): 471-480. DOI:10.1038/s41568-020-0262-1. pmid:32404993 |
[26] | Wei H, Qu L, Dai S, et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis[J].Nat Commun,2021,12(1): 2280. DOI:10.1038/s41467-021-22655-6. pmid:33863900 |
[27] | 崔兴, 孙润洁, 王庆松. 桂枝茯苓胶囊通过线粒体途径对骨髓瘤细胞凋亡的影响[J].中华中医药杂志,2022,37(3): 1395-1400. |
[1] | Zhang Keping, Zhao Yongsheng, Yang Juan, Fu Maoyong.Chlorogenic acid induces mitochondrial dysfunction in lung cancer A549 cells by inhibiting the PI3K-Akt pathway[J]. Journal of International Oncology, 2024, 51(1): 21-28. |
[2] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong.Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells[J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[3] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng.Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway[J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[4] | Wu Jiali, Zhang Jiahui, Zhang Ping, Xiao Xinyue, Li Rui, Zhang Hongyu.Mechanism of Bcl-2 BH4 selective inhibitor BDA-366 on NK/T cell lymphoma cells[J]. Journal of International Oncology, 2023, 50(7): 413-418. |
[5] | Yang Ya, Wang Huili, Liu Yan, Guo Jinfeng, Wang Chunxia, Lyu Min, Shan Changping.Effects of GCSH gene on proliferation and apoptosis of gastric cancer SNU-1 cells[J]. Journal of International Oncology, 2023, 50(5): 257-262. |
[6] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin.lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway[J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[7] | Zhang Yuxiao, Zhang Liansheng, Li Lijuan.Research status and application prospect of a novel immune checkpoint TIGIT in the immunotherapy of multiple myeloma[J]. Journal of International Oncology, 2023, 50(2): 122-125. |
[8] | Zhu Yi, Chen Jian.Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects[J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[9] | Zhao Jianhao, Duan Yanchao.Research progress in the pathogenesis of extramedullary disease in multiple myeloma[J]. Journal of International Oncology, 2023, 50(1): 55-59. |
[10] | Lian Haiwei, Yang Shuorui, Liu Renzhong.Mechanism study on regulation of glioblastoma cell proliferation and apoptosis by sciadopitysin combined with CX-4945 through Notch1 pathway[J]. Journal of International Oncology, 2022, 49(6): 321-326. |
[11] | Yang Ya, Ning Xiaofei, Li Bingliang, Yao Hui, Shan Changping, Lyu Min.Study on the mechanism of procyanidin mediated anti gastric cancer SNU-1 cell line by inducing the production of reactive oxygen species[J]. Journal of International Oncology, 2022, 49(5): 257-262. |
[12] | Gao Shan, Lu Minqiu, Shi Lei, Chu Bin, Fang Lijuan, Xiang Qiuqing, Wang Yutong, Ding Yuehua, Bao Li.Clinical efficacy and safety of ixazomib-based therapy in the treatment of relapsed or refractory multiple myeloma[J]. Journal of International Oncology, 2022, 49(5): 286-291. |
[13] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing.MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2[J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[14] | Laibijiang Wusiman, Cao Bowei, Zhang Wenbin, Gao Hua.Effects of exogenous AGR2 on the proliferation and invasion abilities of colon cancer cells[J]. Journal of International Oncology, 2022, 49(2): 73-78. |
[15] | Zhang Yongli, Zhang Ruojia, Fan Huancai, Ge Luna, Wang Lin.TXNDC5-Prx2 axis regulates drug resistance of prostate cancer cells[J]. Journal of International Oncology, 2021, 48(8): 473-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||