Journal of International Oncology››2024,Vol. 51››Issue (6): 359-363.doi:10.3760/cma.j.cn371439-20240119-00062
• Reviews •Previous ArticlesNext Articles
Received:
2024-01-19Revised:
2024-02-06Online:
2024-06-08Published:
2024-06-28Contact:
Wu Gang, Email:
Supported by:
Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363.
[1] | Chang ET, Ye W, Ernberg I, et al. A novel causal model for nasopharyngeal carcinoma[J].Cancer Causes Control,2022,33(7): 1013-1018. DOI:10.1007/s10552-022-01582-x. |
[2] | Ding X, Zhang WJ, You R, et al. Camrelizumab plus apatinib in patients with recurrent or metastatic nasopharyngeal carcinoma: an open-label, single-arm, phase Ⅱ study[J].J Clin Oncol,2023,41(14): 2571-2582. DOI:10.1200/JCO.22.01450. |
[3] | Jin SZ, Li RY, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J].Cell Res,2020,30(11): 950-965. DOI:10.1038/s41422-020-00402-8. |
[4] | Gong LQ, Kwong DLW, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J].Nat Commun,2021,12(1): 1540. DOI:10.1038/s41467-021-21795-z. pmid:33750785 |
[5] | Chen HW, Duan XB, Deng XH, et al. EBV-upregulated B7-H3 inhibits NK cell-mediated antitumor function and contributes to nasopharyngeal carcinoma progression[J].Cancer Immunol Res,2023,11(6): 830-846. DOI:10.1158/2326-6066.CIR-22-0374. |
[6] | Orange JS. How I manage natural killer cell deficiency[J].J Clin Immunol,2020,40(1): 13-23. DOI:10.1007/s10875-019-00711-7. pmid:31754930 |
[7] | Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host[J].Front Microbiol,2022,13: 955603. DOI:10.3389/fmicb.2022.955603. |
[8] | Wang ZH, Pei XF, Zhu ZQ, et al. CD47 overexpression is associated with Epstein-Barr virus infection and poor prognosis in patients with nasopharyngeal carcinoma[J].Onco Targets Ther,2020,13: 3325-3334. DOI:10.2147/OTT.S245023. |
[9] | von Roemeling CA, Wang YF, Qie YQ, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J].Nat Commun,2020,11(1): 1508. DOI:10.1038/s41467-020-15129-8. pmid:32198351 |
[10] | Sun W, Chen L, Tang J, et al. Targeting EZH2 depletes LMP1-induced activated regulatory T cells enhancing antitumor immunity in nasopharyngeal carcinoma[J].J Cancer Res Ther,2020,16(2): 309-319. DOI:10.4103/jcrt.JCRT_986_19. pmid:32474518 |
[11] | Liu Y, Lui KS, Ye ZD, et al. EBV latent membrane protein 1 augments γδ T cell cytotoxicity against nasopharyngeal carcinoma by induction of butyrophilin molecules[J].Theranostics,2023,13(2): 458-471. DOI:10.7150/thno.78395. pmid:36632221 |
[12] | Chen HW, Zhang X, Zhang SS, et al. T cell epitope screening of Epstein-Barr virus fusion protein gB[J].J Virol,2021,95(10): JVI.00021-JVI.00081. DOI:10.1128/JVI.00081-21. |
[13] | Kase K, Kondo S, Wakisaka N, et al. Epstein-Barr virus LMP1 induces soluble PD-L1 in nasopharyngeal carcinoma[J].Microorganisms,2021,9(3): 603. DOI:10.3390/microorganisms9030603. |
[14] | Wang J, Ge JS, Wang YA, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1[J].Nat Commun,2022,13(1): 866. DOI:10.1038/s41467-022-28479-2. pmid:35165282 |
[15] | Caudell JJ, Gillison ML, Maghami E, et al. NCCN guidelines®insights: head and neck cancers, version 1.2022[J].J Natl Compr Canc Netw,2022,20(3): 224-234. DOI:10.6004/jnccn.2022.0016. |
[16] | Han JQ, Zeng N, Tian K, et al. First-line immunotherapy combinations for recurrent or metastatic nasopharyngeal carcinoma: an updated network meta-analysis and cost-effectiveness analysis[J].Head Neck,2023,45(9): 2246-2258. DOI:10.1002/hed.27452. |
[17] | Mai HQ, Chen QY, Chen DP, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial[J].Nat Med,2021,27(9): 1536-1543. DOI:10.1038/s41591-021-01444-0. |
[18] | Yang YP, Qu S, Li JG, et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial[J].Lancet Oncol,2021, 22(8): 1162-1174. DOI:10.1016/S1470-2045(21)00302-8. |
[19] | Yang YP, Pan AA, Wang H, et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309)[J].Cancer Cell,2023,41(6): 1061-1072.e4. DOI:10.1016/j.ccell.2023.04.014. pmid:37207654 |
[20] | Wang FH, Wei XL, Feng JF, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase Ⅱ clinical trial (POLARIS-02)[J].J Clin Oncol,2021,39(7): 704-712. DOI:10.1200/JCO.20.02712. pmid:33492986 |
[21] | Jiang YF, Fang T, Lu N, et al. Anti-PD1 rechallenge in combination with anti-angiogenesis or anti-EGFR treatment beyond progression in recurrent/metastatic nasopharyngeal carcinoma patients[J].Crit Rev Oncol Hematol,2023,190: 104113. DOI:10.1016/j.critrevonc.2023.104113. |
[22] | Lim DWT, Kao HF, Suteja L, et al. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma[J].Nat Commun,2023,14(1): 2781. DOI:10.1038/s41467-023-38407-7. |
[23] | Xiang Y, Tian MM, Huang J, et al. LMP2-mRNA lipid nanoparticle sensitizes EBV-related tumors to anti-PD-1 therapy by rever-sing T cell exhaustion[J].J Nanobiotechnology,2023,21(1): 324. DOI:10.1186/s12951-023-02069-w. |
[24] | Li WZ, Lv SH, Liu GY, et al. Epstein-Barr virus DNA seropositi-vity links distinct tumoral heterogeneity and immune landscape in nasopharyngeal carcinoma[J].Front Immunol,2023,14: 1124066. DOI:10.3389/fimmu.2023.1124066. |
[25] | Mahadeo KM, Baiocchi R, Beitinjaneh A, et al. Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant reci-pients with Epstein-Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial[J].Lancet Oncol,2024, 25(3): 376-387. DOI:10.1016/S1470-2045(23)00649-6. |
[26] | Jia QZ, Peng L, Chen G, et al. TCR-T cells armored with immune checkpoint blockade in EBV-positive nasopharyngeal carcinoma: the first-in-human phase 1/2 trial[J].J Clin Oncol,2023,41(16): 6047. DOI:10.1200/JCO.2023.41.16_suppl.6047. |
[27] | Wang CW, Chen JW, Li JY, et al. An EBV-related CD4 TCR immunotherapy inhibits tumor growth in an HLA-DP5+nasopha-ryngeal cancer mouse model[J].J Clin Invest,2024,134(8): e172092. DOI:10.1172/JCI172092. |
[28] | Nickles E, Dharmadhikari B, Yating L, et al. Dendritic cell therapy with CD137L-DC-EBV-VAX in locally recurrent or metastatic nasopharyngeal carcinoma is safe and confers clinical benefit[J].Cancer Immunol Immunother,2022,71(6): 1531-1543. DOI:10.1007/s00262-021-03075-3. |
[29] | Zhu XZ, Perales-Puchalt A, Wojtak K, et al. DNA immunotherapy targeting BARF1 induces potent anti-tumor responses against Epstein-Barr-virus-associated carcinomas[J].Mol Ther Oncolytics,2022,24: 218-229. DOI:10.1016/j.omto.2021.12.017. |
[30] | Guo MR, Duan X, Peng XC, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma[J].Nano Res,2023,16(4): 5357-5367. DOI:10.1007/s12274-022-5254-x. |
[31] | Zeng Y, Si YF, Lan GP, et al. LMP2-DC vaccine elicits specific EBV-LMP2 response to effectively improve immunotherapy in patients with nasopharyngeal cancer[J].Biomed Environ Sci,2020,33(11): 849-856. DOI:10.3967/bes2020.115. pmid:33771238 |
[32] | Rühl J, Citterio C, Engelmann C, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas[J].J Clin Invest,2019,129(5): 2071-2087. DOI:10.1172/JCI125364. pmid:31042161 |
[33] | Dummer R, Gyorki DE, Hyngstrom JR, et al. Final 5-year follow-up results evaluating neoadjuvant talimogene laherparepvec plus surgery in advanced melanoma: a randomized clinical trial[J].JAMA Oncol,2023,9(10): 1457-1459. DOI:10.1001/jamaoncol.2023.2789. pmid:37561473 |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[3] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua.Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy[J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[4] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong.Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[5] | Sa Qiang, Xu Hangcheng, Wang Jiayu.Advances in immunotherapy for breast cancer[J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[6] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao.Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes[J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[7] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan.Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer[J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[8] | Cui Tenglu, Lyu lu, Sun Pengfei.Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[9] | Guo Ciliang, Jiang Chunping, Wu Junhua.Gut microbiome and tumor immunotherapy[J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[10] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai.Research progress on the application of combining radiotherapy and systemic therapy in breast cancer[J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[11] | Lyu Lu, Sun Pengfei.Gut flora and cervical cancer[J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[12] | Gu Anqin, Long Jinhua, Jin Feng.Clinical research progress of immunotherapy for nasopharyngeal carcinoma[J]. Journal of International Oncology, 2023, 50(5): 299-303. |
[13] | Ding Hao, Ying Jintao, Fu Maoyong.Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[14] | Ma Pengcheng, Chen Yu.Research progress of primary pulmonary lymphoepithelioma-like carcinoma[J]. Journal of International Oncology, 2023, 50(3): 174-178. |
[15] | Xu Liangfu, Li Yuanfei.Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||