Journal of International Oncology››2014,Vol. 41››Issue (1): 37-40.doi:10.3760/cma.j.issn.1673-422X.2014.01.012
Previous ArticlesNext Articles
Zhang Tingting, Liu Yongjun, Liang Ailing
Online:
2014-01-08Published:
2014-01-22Contact:
Liu Yongjun E-mail:lyj0236@163.comZhang Tingting, Liu Yongjun, Liang Ailing. MicroRNAs and breast cancer[J]. Journal of International Oncology, 2014, 41(1): 37-40.
[1] Zhang B, PanX, Cobb G, et al. MicroRNAs as oncogenes and tumor suppressors[J]. Dev Biol, 2007, 302(1):112. [2] Manikandan J, Aarthi JJ, Kumar SD, et al. Oncomirs: the potential role of noncoding microRNAs in understanding cancer[J]. Bioinformation, 2008, 2(8):330334. [3] Connolly EC, Van Doorslaer K, Rogler LE, et al. Overexpression of miR21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB[J]. Mol Cancer Res, 2010, 8(5):691700. [4] Meng F, Henson R, Lang M, et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology, 2006, 130(7):21132129. [5] Zhu S, Si ML, Wu H, et al. MicroRNA21 targets the tumor suppressor gene tropomyosin 1 (TPM1)[J]. J Biol Chem, 2007, 282(19):1432814336. [6] Zhu, S, Wu H, Wu F, et al. MicroRNA21 targets tumor suppressor genes in invasion and metastasis[J]. Cell Res, 2008, 18(3):350359. [7] Shah MY, Calin GA. MicroRNAs miR221 and miR222: a new level of regulation in aggressive breast cancer[J]. Genome Med, 2011, 3(8):56. [8] Li J, Kong X, Zhang J, et al. Correction: miRNA26b inhibits proliferation by targeting PTGS2 in breast cancer[J]. Cancer Cell Int, 2013, 13(1):17. [9] Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelialtomesenchymal transition interactome geneexpression signature is associated with claudinlow and metaplastic breast cancer subtypes[J]. Proc Natl Acad Sci USA, 2010, 107(35):1544915454. [10] Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer[J]. Oncogene, 2010, 29(34):47414751. [11] Liang YJ, Wang QY, Zhou CX, et al. MiR124 targets Slug to regulate epithelialmesenchymal transition and metastasis of breast cancer[J]. Carcinogenesis, 2013, 34(3):713722. [12] Stinson S, Lackner MR, Adai AT, et al. MiR221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelialtomesenchymal transition in breast cancer[J]. Sci Signal, 2011, 4(186):pt5. [13] Han M, Liu M, Wang Y, et al. Reexpression of miR21 contributes to migration and invasion by inducing epithelialmesenchymal transition consistent with cancer stem cell characteristics in MCF7 cells[J]. Mol Cell Biochem, 2012, 363(12):427436. [14] Schwarzenbacher D, Balic M, Pichler M. The role of microRNAs in breast cancer stem cells[J]. Int J Mol Sci, 2013, 14(7):1471214723. [15] Liu S, Patel SH, Ginestier C, et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells[J]. PLoS Genet, 2012, 8(6):e1002751. [16] Qian B, Katsaros D, Lu L, et al. High miR21 expression in breast cancer associated with poor diseasefree survival in early stage disease and high TGFbeta1[J]. Breast Cancer Res Treat, 2009, 117(1):131140. [17] Wu ZS, Wu Q, Wang CQ, et al. MiR340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein cMet[J]. Cancer, 2011, 117(13): 28422852. [18] 陈晓兰, 秦树佩, 杨建新. 微小RNA与 乳腺癌细胞的增殖与转移[J]. 国际肿瘤学杂志, 2012, 39(4): 265268. [19] Ma L, TeruyaFeldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA10b in breast cancer[J]. Nature, 2007, 449(7163): 682688. [20] Sun Y, Wang M, Lin G, et al. Serum microRNA155 as a potential biomarker to track disease in breast cancer[J]. PLoS One, 2012, 7(10):e47003. [21] Lu Z, Ye Y, Jiao D, et al. MiR155 and miR31 are differentially expressed in breast cancer patients and are correlated with the estrogen receptor and progesterone receptor status[J]. Oncol Lett, 2012, 4(5):10271032. [22] Wang H, Tan G, Dong L, et al. Circulating miR125b as a marker predicting chemoresistance in breast cancer[J]. PLoS One, 2012, 7(4):e34210. [23] Liu Y, Zhao J, Zhang PY, et al. MicroRNA10b targets Ecadherin and modulates breast cancer metastasis[J]. Med Sci Monit, 2012, 18(8):BR299308. [24] Li J, Shen L, Xiao XG, et al. MicroRNAs in breast cancer and breast cancer stem cells and their potential for breast cancer therapy[J]. Chin Med J (Engl), 2013, 126(13):25562563. [25] Kota J, Chivukula RR, O′Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model[J]. Cell, 2009, 137(6):10051017. [26] Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells[J]. Nat Methods, 2007, 4(9):721726. [27] Ma L, Young J, Prabhala H, et al. MiR9, a MYC/MYCNactivated microRNA, regulates Ecadherin and cancer metastasis[J]. Nat Cell Biol, 2010, 12(3):247256. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yuan Jian, Huang Yanhua.Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer[J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[3] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[4] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[5] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng.Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor[J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[6] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan.Progress of ferroptosis-related mechanisms in osteosarcoma[J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[7] | Sa Qiang, Xu Hangcheng, Wang Jiayu.Advances in immunotherapy for breast cancer[J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[8] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[9] | Zhang Lili, Tan Ru, Fang Xueli, Yang Yu, Sang Zheng, Li Baosheng.Imaging diagnosis, pathological upgrade, and imaging technology progress of ductal carcinomain situof the breast[J]. Journal of International Oncology, 2024, 51(3): 166-169. |
[10] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing.Progress of radiotherapy in oligometastatic non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[11] | Peng Qin, Cai Yuting, Wang Wei.Advances on KPNA2 in liver cancer[J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[12] | Gong Yan, Chen Honglei.Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer[J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[13] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan.Research progress on the histopathological growth patterns of colorectal liver metastasis[J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[14] | Chen Boguang, Wang Sugui, Zhang Yongjie.Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer[J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[15] | Jin Xudong, Chen Zhongjian, Mao Weimin.Research progress on the role of MTAP in malignant mesothelioma[J]. Journal of International Oncology, 2024, 51(2): 99-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||