Xuedong120504@163.com。
"],"authorList":[{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;"],"deceased":false,"name_cn":"李萍","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;"],"name_en":"Ping LI"},{"zuoZheDiZhiL_cn":["安徽省第二人民医院检验科,安徽 合肥 230011 ;"],"deceased":false,"name_cn":"张自云","zuoZheDiZhiL_en":["Department of Clinical Laboratory,The Second People's Hospital of Anhui Province,Hefei 230011,China ;"],"name_en":"Ziyun ZHANG"},{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;"],"deceased":false,"name_cn":"建奇伟","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;"],"name_en":"Qiwei JIAN"},{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;"],"deceased":false,"name_cn":"王新萍","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;"],"name_en":"Xinping WANG"},{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;安徽省第二人民医院检验科,安徽 合肥 230011 ;"],"deceased":false,"name_cn":"王学东","email":"Xuedong120504@163.com","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;Department of Clinical Laboratory,The Second People's Hospital of Anhui Province,Hefei 230011,China ;"],"name_en":"Xuedong WANG"}],"affList_en":["1.School of Medicine,Anhui University of Science and Technology,Huainan 232001,China
2.Department of Clinical Laboratory,The Second People's Hospital of Anhui Province,Hefei 230011,China"],"fundList_cn":["安徽省高校自然betway必威亚洲 重大项目(2023AH040393)"],"affList_cn":["1.安徽理工大学医学院,安徽 淮南 232001
2.安徽省第二人民医院检验科,安徽 合肥 230011"],"article":{"keywordList_cn":["乳腺癌","非编码RNA","化疗耐药"],"juan":"45","zhaiyao_cn":"

乳腺癌(breast cancer,BC)是女性最常见的恶性肿瘤之一,也是导致死亡的主要原因。目前,BC治疗涉及手术、放疗、化疗等多学科方法。蒽环类、紫杉烷类以及5‐氟尿嘧啶等化疗药物,广泛应用于BC的治疗,可显著降低死亡和复发的风险。但多种复杂因素引起的化疗耐药严重影响临床药物治疗效果,导致患者预后不良。这些药物耐药机制复杂,尚未完全阐明。非编码RNA主要包括微小RNA、长链非编码RNA、环状RNA等。不同类型的化疗药物和非编码RNA相互调节,复杂的联系在一起,精确介导BC的化疗耐药。本综述详细阐述了不同化疗药物耐药中涉及的非编码RNA,以期为BC的治疗提供新的潜在靶点。

","endNoteUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=EndNote&id=725","reference":"
1 Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin202373(1): 17.
2 Ding YF, Wu WB, Ma ZH, et al. Potential value of MicroRNA-21 as a biomarker for predicting the prognosis of patients with breast cancer: a protocol for meta-analysis and bioinformatics analysis[J]. Medicine (Baltimore)2021100(22): e25964.
3 Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness[J]. Cells20198(11): 1361.
4 Yousefi H, Maheronnaghsh M, Molaei F, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance[J]. Oncogene202039(5): 953.
5 Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol201617(4): 205.
6 赵雪娜, 张馨蕾, 舒政, 等. 蒽环类药物心脏毒副作用机制及中医药治疗研究进展[J]. betway必威登陆网址 (betway.com )学报202445(1): 51.
7 Huang P, Cheng HY, JI JH, et al. LncRNA miat knockdown enhances pirarubicin‐mediated anticancer sensitivity in breast cancer cells[J]. Environ Toxicol202439(1): 23.
8 Aini S, Bolati S, Ding W, et al. LncRNA SNHG10 suppresses the development of doxorubicin resistance by downregulating miR-302b in triple-negative breast cancer[J]. Bioengineered202213(5): 11430.
9 Liu SQ, Sun Y, Hou YX, et al. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties[J]. J Hematol Oncol202114(1): 178.
10 Zhou ZY, Cao YK, Yang Y, et al. METTL3-mediated m6A modification of lnc KCNQ1OT1 promotes doxorubicin resistance in breast cancer by regulating miR-103a-3p/MDR1 axis[J]. Epigenetics202318(1): 2217033.
11 Yahya SMM, Nabih HK, Elsayed GH, et al. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene[J]. Breast Cancer Res Treat2024204(1): 133.
12 Garrido-Cano I, Adam-Artigues A, Lameirinhas A, et al. miR‐99a-5p modulates doxorubicin resistance via the COX-2/ABCG2 axis in triple‐negative breast cancer: from the discovery to in vivo studies[J]. Cancer Commun202242(12): 1412.
13 Zhang YW, Guan YP, Zheng XY, et al. Hypoxia-induced miR-181a-5p up-regulation reduces epirubicin sensitivity in breast cancer cells through inhibiting EPDR1/TRPC1 to activate PI3K/AKT signaling pathway[J]. BMC Cancer202424(1): 167.
14 Pan XP, Hong XL, Li SM, et al. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner[J]. Exp Mol Med202153(1): 91.
15 Xu SL, Luo W, Li MX, et al. Circ_0001667 promotes adriamycin resistance and malignant progression via targeting the miR-193a-5p/rap2a molecular axis in breast cancer[J]. Clin Breast Cancer202323(1): 71.
16 Cui YF, Fan J, Shi WB, et al. Circ_0001667 knockdown blocks cancer progression and attenuates adriamycin resistance by depleting NCOA3 via releasing miR-4458 in breast cancer[J]. Drug Dev Res202283(1): 75.
17 司贵米, 山长平. 外泌体非编码RNA在三阴性乳腺癌中的研究进展[J]. betway必威登陆网址 (betway.com )学报202344(6): 461.
18 Wang XL, Chen T, Li C, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR[J]. J Hematol Oncol202215(1): 122.
19 Chen JJ, Shi P, Zhang JH, et al. CircRNA_0044556 diminishes the sensitivity of triple?negative breast cancer cells to adriamycin by sponging miR?145 and regulating NRAS[J]. Mol Med Rep202225(2): 51.
20 Luo F, Zhang MD, Sun BW, et al. LINC00115 promotes chemoresistant breast cancer stem-like cell stemness and metastasis through SETDB1/PLK3/HIF1α signaling[J]. Mol Cancer202423(1): 60.
21 Tao S, Wang J, Li F, et al. Extracellular vesicles released by hypoxia-induced tumor-associated fibroblasts impart chemoresistance to breast cancer cells via long noncoding RNA H19 delivery[J]. FASEB J202438(2): e23165.
22 Lin W, Mo CQ, Kong LJ, et al. FTO‐mediated epigenetic upregulation of LINC01559 confers cell resistance to docetaxel in breast carcinoma by suppressing miR‐1343‐3p[J]. Kaohsiung J Med Sci202339(9): 873.
23 Wei XY, Tao S, Mao HL, et al. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b[J]. Gene2023860: 147230.
24 Shi YX, Wang J, Tao S, et al. miR-142-3p improves paclitaxel sensitivity in resistant breast cancer by inhibiting autophagy through the GNB2-AKT-mTOR pathway[J]. Cell Signal2023103: 110566.
25 Zhou Y, Cai W, Lu HL. Overexpression of microRNA-145 enhanced docetaxel sensitivity in breast cancer cells via inactivation of protein kinase B gamma-mediated phosphoinositide 3-kinase -protein kinase B pathway[J]. Bioengineered202213(4): 11310.
26 Li HC, Sun XH, Li JD, et al. Hypoxia induces docetaxel resistance in triple-negative breast cancer via the HIF-1α/miR-494/survivin signaling pathway[J]. Neoplasia202232: 100821.
27 Li YL, Li WL, Lin J, et al. miR-146a enhances the sensitivity of breast cancer cells to paclitaxel by downregulating IRAK1[J]. Cancer Biother Radiopharm202237(8): 624.
28 Xia WJ, Chen WZ, Ni C, et al. Chemotherapy-induced exosomal circBACH1 promotes breast cancer resistance and stemness via miR-217/G3BP2 signaling pathway[J]. Breast Cancer Res202325(1): 85.
29 Kong ZH, Han Q, Zhu BS, et al. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR-136-5p/YWHAZ axis[J]. Thorac Cancer202314(19): 1831.
30 Wang L, Zhou YH, Jiang L, et al. CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway[J]. Mol Cancer202120(1): 43.
31 Zang HL, Li YH, Zhang X, et al. Circ-RNF111 contributes to paclitaxel resistance in breast cancer by elevating E2F3 expression via miR-140-5p[J]. Thorac Cancer202011(7): 1891.
32 Li L, Zhang Y, Zhan YW, et al. LINC00467 mediates the 5-fluorouracil resistance in breast cancer cells[J]. In Vitro Cell Dev Biol Anim202460(1): 80.
33 Su AC, Yao K, Zhang HR, et al. DANCR induces cisplatin resistance of triple-negative breast cancer by KLF5/p27 signaling[J]. Am J Pathol2023193(3): 248.
34 Zhou DP, Gu J, Wang YP, et al. Long noncoding RNA CCAT2 reduces chemosensitivity to 5‐fluorouracil in breast cancer cells by activating the mTOR axis[J]. J Cell Mol Med202226(5): 1392.
35 Zhou DP, Gu J, Wang YP, et al. Long non-coding RNA NEAT1 transported by extracellular vesicles contributes to breast cancer development by sponging microRNA-141-3p and regulating KLF12[J]. Cell Biosci202111(1): 68.
36 Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation[J]. Sci Rep202010(1): 17954.
37 Li X, Chu X, Wang H, et al. Serum exosomal miR‐3662 down‐regulates the expression of RBMS3 to promote malignant progression and gemcitabine resistance of breast cancer cells[J]. Chem Biol Drug Des2024103(3): e14488.
38 Yang LW, Wu XJ, Liang Y, et al. miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5[J]. Mol Carcinog202059(4): 447.
39 Wang SM, Oh DY, Leventaki V, et al. MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer[J]. Cancer Lett2019465: 12.
40 Wang LM, Yang X, Zhou F, et al. Circular RNA UBAP2 facilitates the cisplatin resistance of triple-negative breast cancer via microRNA-300/anti-silencing function 1B histone chaperone/PI3K/AKT/mTOR axis[J]. Bioengineered202213(3): 7197.
41 Yang W, Gu J, Wang XD, et al. Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7[J]. J Cell Mol Med201923(5): 3166.
42 Yang W, Yang XJ, Wang XD, et al. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGγ[J]. J Cell Mol Med201923(8): 4921.
43 Song X, Wang XZ, Chen XQ, et al. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis[J]. J Proteomics2024292: 105055.
","bibtexUrl_cn":"//www.pitakata.com/xuebao/CN/article/getTxtFile.do?fileType=BibTeX&id=725","articleType":"research-article","abstractUrl_en":"http://xuebao.sdfmu.edu.cn/EN/10.3969/j.issn.2097-0005.2024.12.010","qi":"12","id":725,"nian":2024,"bianHao":"1734670652723-586410867","zuoZheEn_L":"Ping LI, Ziyun ZHANG, Qiwei JIAN, Xinping WANG, Xuedong WANG","juanUrl_en":"http://xuebao.sdfmu.edu.cn/EN/Y2024","shouCiFaBuRiQi":"2024-12-20","qiShiYe":"759","received":"2024-06-17","qiUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/Y2024/V45/I12","lanMu_cn":"综述","pdfSize":"434","zuoZhe_CN":"李萍1, 张自云2, 建奇伟1, 王新萍1, 王学东1,2()","risUrl_cn":"//www.pitakata.com/xuebao/CN/article/getTxtFile.do?fileType=Ris&id=725","title_cn":"非编码RNA在乳腺癌化疗药物中的研究进展","doi":"10.3969/j.issn.2097-0005.2024.12.010","jieShuYe":"763","keywordList_en":["breast cancer","non-coding RNA","chemoresistance"],"endNoteUrl_cn":"//www.pitakata.com/xuebao/CN/article/getTxtFile.do?fileType=EndNote&id=725","zhaiyao_en":"

Breast cancer (BC) is one of the most common malignant tumors in women and is also a major cause of death. Currently, BC treatment involves a multidisciplinary approach, including surgery, radiotherapy, chemotherapy, and so on. Anthracyclines, taxanes, and 5-fluorouracil, among other chemotherapeutic drugs, are widely used in the treatment of BC and can significantly reduce the risk of death and recurrence. However, chemoresistance caused by various complex factors severely affects the clinical efficacy of drug treatment, leading to poor prognosis for patients. The mechanisms of drug resistance to these medications are complex and not yet fully elucidated. Non-coding RNA mainly includes microRNA, long non-coding RNA, circular RNA, etc. Different types of chemotherapeutic drugs and non-coding RNAs regulate and interact with each other in a complex manner, intricately linked to precisely mediate chemoresistance in BC. In this review, the involvement of non-coding RNA in drug resistance to different chemotherapy drugs is detailed, with the hope of providing new potential targets for the diagnosis and treatment of BC.

","bibtexUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=725","abstractUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/10.3969/j.issn.2097-0005.2024.12.010","zuoZheCn_L":"李萍, 张自云, 建奇伟, 王新萍, 王学东","juanUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/Y2024","lanMu_en":"Reviews","qiUrl_en":"//www.pitakata.com/xuebao/EN/Y2024/V45/I12","zuoZhe_EN":"Ping LI1, Ziyun ZHANG2, Qiwei JIAN1, Xinping WANG1, Xuedong WANG1,2()","risUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=Ris&id=725","title_en":"Research progress of non-coding RNA in chemotherapeutic drugs for breast cancer","hasPdf":"true"},"authorNotes_cn":["王学东,E-mail:Xuedong120504@163.com
"],"authorList_en":[{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;"],"deceased":false,"name_cn":"李萍","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;"],"name_en":"Ping LI"},{"zuoZheDiZhiL_cn":["安徽省第二人民医院检验科,安徽 合肥 230011 ;"],"deceased":false,"name_cn":"张自云","zuoZheDiZhiL_en":["Department of Clinical Laboratory,The Second People's Hospital of Anhui Province,Hefei 230011,China ;"],"name_en":"Ziyun ZHANG"},{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;"],"deceased":false,"name_cn":"建奇伟","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;"],"name_en":"Qiwei JIAN"},{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;"],"deceased":false,"name_cn":"王新萍","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;"],"name_en":"Xinping WANG"},{"zuoZheDiZhiL_cn":["安徽理工大学医学院,安徽 淮南 232001 ;安徽省第二人民医院检验科,安徽 合肥 230011 ;"],"deceased":false,"name_cn":"王学东","email":"Xuedong120504@163.com","zuoZheDiZhiL_en":["School of Medicine,Anhui University of Science and Technology,Huainan 232001,China ;Department of Clinical Laboratory,The Second People's Hospital of Anhui Province,Hefei 230011,China ;"],"name_en":"Xuedong WANG"}]}">

Research progress of non-coding RNA in chemotherapeutic drugs for breast cancer

Ping LI, Ziyun ZHANG, Qiwei JIAN, Xinping WANG, Xuedong WANG

Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences››2024, Vol. 45››Issue (12): 759-763.

PDF(434 KB)
PDF(434 KB)
Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences ›› 2024, Vol. 45 ›› Issue (12) : 759-763. DOI: 10.3969/j.issn.2097-0005.2024.12.010
Reviews

Research progress of non-coding RNA in chemotherapeutic drugs for breast cancer

    Author information +
    History +

    Abstract

    Breast cancer (BC) is one of the most common malignant tumors in women and is also a major cause of death. Currently, BC treatment involves a multidisciplinary approach, including surgery, radiotherapy, chemotherapy, and so on. Anthracyclines, taxanes, and 5-fluorouracil, among other chemotherapeutic drugs, are widely used in the treatment of BC and can significantly reduce the risk of death and recurrence. However, chemoresistance caused by various complex factors severely affects the clinical efficacy of drug treatment, leading to poor prognosis for patients. The mechanisms of drug resistance to these medications are complex and not yet fully elucidated. Non-coding RNA mainly includes microRNA, long non-coding RNA, circular RNA, etc. Different types of chemotherapeutic drugs and non-coding RNAs regulate and interact with each other in a complex manner, intricately linked to precisely mediate chemoresistance in BC. In this review, the involvement of non-coding RNA in drug resistance to different chemotherapy drugs is detailed, with the hope of providing new potential targets for the diagnosis and treatment of BC.

    Key words

    breast cancer/non-coding RNA/chemoresistance

    Cite this article

    Download Citations
    Ping LI, Ziyun ZHANG, Qiwei JIAN, Xinping WANG, Xuedong WANG.Research progress of non-coding RNA in chemotherapeutic drugs for breast cancer[J]. Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences. 2024, 45(12): 759-763 https://doi.org/10.3969/j.issn.2097-0005.2024.12.010

    References

    1 Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J].CA Cancer J Clin202373(1): 17.
    2 Ding YF, Wu WB, Ma ZH, et al. Potential value of MicroRNA-21 as a biomarker for predicting the prognosis of patients with breast cancer: a protocol for meta-analysis and bioinformatics analysis[J].Medicine (Baltimore)2021100(22): e25964.
    3 Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness[J].Cells20198(11): 1361.
    4 Yousefi H, Maheronnaghsh M, Molaei F, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance[J].Oncogene202039(5): 953.
    5 Chen LL. The biogenesis and emerging roles of circular RNAs[J].Nat Rev Mol Cell Biol201617(4): 205.
    6 赵雪娜, 张馨蕾, 舒政, 等. 蒽环类药物心脏毒副作用机制及中医药治疗研究进展[J].betway必威登陆网址 (betway.com )学报202445(1): 51.
    7 Huang P, Cheng HY, JI JH, et al. LncRNA miat knockdown enhances pirarubicin‐mediated anticancer sensitivity in breast cancer cells[J].Environ Toxicol202439(1): 23.
    8 Aini S, Bolati S, Ding W, et al. LncRNA SNHG10 suppresses the development of doxorubicin resistance by downregulating miR-302b in triple-negative breast cancer[J].Bioengineered202213(5): 11430.
    9 Liu SQ, Sun Y, Hou YX, et al. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties[J].J Hematol Oncol202114(1): 178.
    10 Zhou ZY, Cao YK, Yang Y, et al. METTL3-mediated m6A modification of lnc KCNQ1OT1 promotes doxorubicin resistance in breast cancer by regulating miR-103a-3p/MDR1 axis[J].Epigenetics202318(1): 2217033.
    11 Yahya SMM, Nabih HK, Elsayed GH, et al. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene[J].Breast Cancer Res Treat2024204(1): 133.
    12 Garrido-Cano I, Adam-Artigues A, Lameirinhas A, et al. miR‐99a-5p modulates doxorubicin resistance via the COX-2/ABCG2 axis in triple‐negative breast cancer: from the discovery to in vivo studies[J].Cancer Commun202242(12): 1412.
    13 Zhang YW, Guan YP, Zheng XY, et al. Hypoxia-induced miR-181a-5p up-regulation reduces epirubicin sensitivity in breast cancer cells through inhibiting EPDR1/TRPC1 to activate PI3K/AKT signaling pathway[J].BMC Cancer202424(1): 167.
    14 Pan XP, Hong XL, Li SM, et al. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner[J].Exp Mol Med202153(1): 91.
    15 Xu SL, Luo W, Li MX, et al. Circ_0001667 promotes adriamycin resistance and malignant progression via targeting the miR-193a-5p/rap2a molecular axis in breast cancer[J].Clin Breast Cancer202323(1): 71.
    16 Cui YF, Fan J, Shi WB, et al. Circ_0001667 knockdown blocks cancer progression and attenuates adriamycin resistance by depleting NCOA3 via releasing miR-4458 in breast cancer[J].Drug Dev Res202283(1): 75.
    17 司贵米, 山长平. 外泌体非编码RNA在三阴性乳腺癌中的研究进展[J].betway必威登陆网址 (betway.com )学报202344(6): 461.
    18 Wang XL, Chen T, Li C, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR[J].J Hematol Oncol202215(1): 122.
    19 Chen JJ, Shi P, Zhang JH, et al. CircRNA_0044556 diminishes the sensitivity of triple?negative breast cancer cells to adriamycin by sponging miR?145 and regulating NRAS[J].Mol Med Rep202225(2): 51.
    20 Luo F, Zhang MD, Sun BW, et al. LINC00115 promotes chemoresistant breast cancer stem-like cell stemness and metastasis through SETDB1/PLK3/HIF1α signaling[J].Mol Cancer202423(1): 60.
    21 Tao S, Wang J, Li F, et al. Extracellular vesicles released by hypoxia-induced tumor-associated fibroblasts impart chemoresistance to breast cancer cells via long noncoding RNA H19 delivery[J].FASEB J202438(2): e23165.
    22 Lin W, Mo CQ, Kong LJ, et al. FTO‐mediated epigenetic upregulation of LINC01559 confers cell resistance to docetaxel in breast carcinoma by suppressing miR‐1343‐3p[J].Kaohsiung J Med Sci202339(9): 873.
    23 Wei XY, Tao S, Mao HL, et al. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b[J].Gene2023860: 147230.
    24 Shi YX, Wang J, Tao S, et al. miR-142-3p improves paclitaxel sensitivity in resistant breast cancer by inhibiting autophagy through the GNB2-AKT-mTOR pathway[J].Cell Signal2023103: 110566.
    25 Zhou Y, Cai W, Lu HL. Overexpression of microRNA-145 enhanced docetaxel sensitivity in breast cancer cells via inactivation of protein kinase B gamma-mediated phosphoinositide 3-kinase -protein kinase B pathway[J].Bioengineered202213(4): 11310.
    26 Li HC, Sun XH, Li JD, et al. Hypoxia induces docetaxel resistance in triple-negative breast cancer via the HIF-1α/miR-494/survivin signaling pathway[J].Neoplasia202232: 100821.
    27 Li YL, Li WL, Lin J, et al. miR-146a enhances the sensitivity of breast cancer cells to paclitaxel by downregulating IRAK1[J].Cancer Biother Radiopharm202237(8): 624.
    28 Xia WJ, Chen WZ, Ni C, et al. Chemotherapy-induced exosomal circBACH1 promotes breast cancer resistance and stemness via miR-217/G3BP2 signaling pathway[J].Breast Cancer Res202325(1): 85.
    29 Kong ZH, Han Q, Zhu BS, et al. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR-136-5p/YWHAZ axis[J].Thorac Cancer202314(19): 1831.
    30 Wang L, Zhou YH, Jiang L, et al. CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway[J].Mol Cancer202120(1): 43.
    31 Zang HL, Li YH, Zhang X, et al. Circ-RNF111 contributes to paclitaxel resistance in breast cancer by elevating E2F3 expression via miR-140-5p[J].Thorac Cancer202011(7): 1891.
    32 Li L, Zhang Y, Zhan YW, et al. LINC00467 mediates the 5-fluorouracil resistance in breast cancer cells[J].In Vitro Cell Dev Biol Anim202460(1): 80.
    33 Su AC, Yao K, Zhang HR, et al. DANCR induces cisplatin resistance of triple-negative breast cancer by KLF5/p27 signaling[J].Am J Pathol2023193(3): 248.
    34 Zhou DP, Gu J, Wang YP, et al. Long noncoding RNA CCAT2 reduces chemosensitivity to 5‐fluorouracil in breast cancer cells by activating the mTOR axis[J].J Cell Mol Med202226(5): 1392.
    35 Zhou DP, Gu J, Wang YP, et al. Long non-coding RNA NEAT1 transported by extracellular vesicles contributes to breast cancer development by sponging microRNA-141-3p and regulating KLF12[J].Cell Biosci202111(1): 68.
    36 Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation[J].Sci Rep202010(1): 17954.
    37 Li X, Chu X, Wang H, et al. Serum exosomal miR‐3662 down‐regulates the expression of RBMS3 to promote malignant progression and gemcitabine resistance of breast cancer cells[J].Chem Biol Drug Des2024103(3): e14488.
    38 Yang LW, Wu XJ, Liang Y, et al. miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5[J].Mol Carcinog202059(4): 447.
    39 Wang SM, Oh DY, Leventaki V, et al. MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer[J].Cancer Lett2019465: 12.
    40 Wang LM, Yang X, Zhou F, et al. Circular RNA UBAP2 facilitates the cisplatin resistance of triple-negative breast cancer via microRNA-300/anti-silencing function 1B histone chaperone/PI3K/AKT/mTOR axis[J].Bioengineered202213(3): 7197.
    41 Yang W, Gu J, Wang XD, et al. Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7[J].J Cell Mol Med201923(5): 3166.
    42 Yang W, Yang XJ, Wang XD, et al. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGγ[J].J Cell Mol Med201923(8): 4921.
    43 Song X, Wang XZ, Chen XQ, et al. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis[J].J Proteomics2024292: 105055.
    PDF(434 KB)

    Accesses

    Citation

    Detail

    Sections
    Recommended

    /