
神经胶质瘤快速检测技术,作为多学科交叉融合的现实应用在社会、科技与经济领域中的影响力日益凸显。本综述涉及神经胶质瘤快速检测的多个维度,包括技术应用场景以及未来趋势等多个方面。首先,本文回溯了神经胶质瘤快速检测领域的历史脉络,强调了近十余年来取得的显著成果与进步。其次,本文阐述了目前热门的神经胶质瘤快速检测技术及其在临床实践中的应用现状。最后,本文探讨了神经胶质瘤快速检测所面临的挑战,并对该技术的最新进展进行了展望,旨在提供一个视角,以更好地理解神经胶质瘤快速检测技术领域的发展现状与未来趋势。
","endNoteUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=EndNote&id=750","reference":"1 | Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a \"state of the science\" review[J]. Neuro Oncol, 2014, 16(7): 896. |
2 | Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications[J]. Cancer Discov, 2021, 11(3): 575. |
3 | Wang LM, Englander ZK, Miller ML, et al. Malignant glioma[J]. Adv Exp Med Biol, 2023, 1405: 1. |
4 | Rafique Z, Awan MW, Iqbal S, et al. Diagnostic accuracy of magnetic resonance spectroscopy in predicting the grade of glioma keeping histopathology as the gold standard[J]. Cureus, 2022, 14(2): e22056. |
5 | Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma[J]. Cancer Rep (Hoboken), 2019, 2(6): e1216. |
6 | Kristensen BW, Priesterbach-Ackley LP, Petersen JK, et al. Molecular pathology of tumors of the central nervous system[J]. Ann Oncol, 2019, 30(8): 1265. |
7 | Yang KY, Wu ZJ, Zhang H, et al. Glioma targeted therapy: insight into future of molecular approaches[J]. Mol Cancer, 2022, 21(1): 39. |
8 | Xue H, Han Z, Li HY, et al. Application of intraoperative rapid molecular diagnosis in precision surgery for glioma: mimic the world health organization CNS5 integrated diagnosis[J]. Neurosurgery, 2023, 92(4): 762. |
9 | ?ledzińska P, Bebyn MG, Furtak J, et al. Prognostic and predictive biomarkers in gliomas[J]. Int J Mol Sci, 2021, 22(19): 10373. |
10 | Smith HL, Wadhwani N, Horbinski C. Major features of the 2021 WHO classification of CNS tumors[J]. Neurotherapeutics, 2022, 19(6): 1691. |
11 | Chou FJ, Liu Y, Lang FC, et al. D-2-hydroxyglutarate in glioma biology[J]. Cells, 2021, 10(9): 2345. |
12 | van den Bent MJ, Tesileanu CMS, Wick W, et al. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2021, 22(6): 813. |
13 | Maurer GD, Heller S, Wanka C, et al. Knockdown of the TP53-Induced glycolysis and apoptosis regulator (TIGAR) sensitizes glioma cells to hypoxia, irradiation and temozolomide[J]. Int J Mol Sci, 2019, 20(5): 1061. |
14 | Wu SF, Li XL, Gao F, et al. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma[J]. Neuro Oncol, 2021, 23(6): 920. |
15 | Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors[J]. N Engl J Med, 2005, 353(19): 2012. |
16 | Hasanau T, Pisarev E, Kisil O, et al. Detection of TERT promoter mutations as a prognostic biomarker in gliomas: methodology, prospects, and advances[J]. Biomedicines, 2022, 10(3): 728. |
17 | Alturki N, Umer M, Ishaq A, et al. Combining CNN features with voting classifiers for optimizing performance of brain tumor classification[J]. Cancers (Basel), 2023, 15(6): 1767. |
18 | Luo AQ, Meng M, Wang GY, et al. Myeloid-derived suppressor cells recruited by chemokine (C-C motif) ligand 3 promote the progression of breast cancer via phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin signaling[J]. J Breast Cancer, 2020, 23(2): 141. |
19 | Brahimaj BC, Kochanski RB, Pearce JJ, et al. Structural and functional imaging in glioma management[J]. Neurosurgery, 2021, 88(2): 211. |
20 | Henson JW, Gaviani P, Gonzalez RG. MRI in treatment of adult gliomas[J]. Lancet Oncol, 2005, 6(3): 167. |
21 | Li GZ, Li L, Li YM, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022, 145(3): 1151. |
22 | Togao O, Hiwatashi A, Yamashita K, et al. Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion Mr imaging[J]. Neuro Oncol, 2016, 18(1): 132. |
23 | Spicer CD, Jumeaux C, Gupta B, et al. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications[J]. Chem Soc Rev, 2018, 47(10): 3574. |
24 | Wu YY, Hu DH, Gao DY, et al. Miniature NIR-II nanoprobes for active-targeted phototheranostics of brain tumors[J]. Adv Healthc Mater, 2022, 11(23): e2202379. |
25 | Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives[J]. Biomark Res, 2023, 11(1): 35. |
26 | Yang YH, He MZ, Li T, et al. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis[J]. Neurosurg Rev, 2019, 42(2): 185. |
27 | van Dellen JR, Danziger A. Failure of computerized tomography to differentiate between radiation necrosis and cerebral tumour[J]. S Afr Med J, 1978, 53(5): 171. |
28 | Bergstr?m M, Collins VP, Ehrin E, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine[J]. J Comput Assist Tomogr, 1983, 7(6): 1062. |
29 | Rachinger W, Goetz C, P?pperl G, et al. Positron emission tomography with O-(2-[18F]flouroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas[J]. Neurosurgery, 2005, 57(3): 505. |
30 | Singnurkar A, Poon R, Detsky J. 18F-FET-PET imaging in high-grade gliomas and brain metastases: a systematic review and meta-analysis[J]. J Neurooncol, 2023, 161(1): 1. |
31 | Galldiks N, Stoffels G, Filss CP, et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis[J]. J Nucl Med, 2012, 53(9): 1367. |
32 | Vettermann F, Suchorska B, Unterrainer M, et al. Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic 18F-FET PET[J]. Eur J Nucl Med Mol Imaging, 2019, 46(12): 2581. |
33 | Pigeon H, Pérès EA, Truillet C, et al. TSPO-PET and diffusion-weighted MRI for imaging a mouse model of infiltrative human glioma[J]. Neuro Oncol, 2019, 21(6): 755. |
34 | Arnold M, Rutherford MJ, Bardot A, et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): a population-based study[J]. Lancet Oncol, 2019, 20(11): 1493. |
35 | Marchetti L, Novelli F, Tanno B, et al. Peptide-functionalized and drug-loaded tomato bushy stunt virus nanoparticles counteract tumor growth in a mouse model of shh-dependent medulloblastoma[J]. Int J Mol Sci, 2023, 24(10): 8911. |
36 | Xu SB, Zhang GX, Zhang JM, et al. Advances in brain tumor therapy based on the magnetic nanoparticles[J]. Int J Nanomedicine, 2023, 18: 7803. |
37 | 陈雯琳, 王月坤, 刘千舒, 等. 2022年度我国脑胶质瘤领域研究进展[J]. 协和医学杂志, 2023, 14(5): 983. |
38 | Wolter M, Felsberg J, Malzkorn B, et al. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas[J]. Acta Neuropathol Commun, 2022, 10(1): 42. |
39 | Fujioka Y, Hata N, Akagi Y, et al. Molecular diagnosis of diffuse glioma using a chip-based digital PCR system to analyze IDH, TERT, and H3 mutations in the cerebrospinal fluid[J]. J Neurooncol, 2021, 152(1): 47. |
40 | Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid[J]. Nature, 2019, 565(7741): 654. |
41 | Yan DM, Yu YP, Ni QW, et al. The overexpression and clinical significance of TBX15 in human gliomas[J]. Sci Rep, 2023, 13(1): 9771. |
42 | Xu H, Xia YK, Li CJ, et al. Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry[J]. Lab Invest, 2019, 99(4): 588. |
43 | Zhang J, Mu N, Liu LH, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosens Bioelectron, 2021, 185: 113241. |
44 | Chanbour H, Chotai S. Review of intraoperative adjuncts for maximal safe resection of gliomas and its impact on outcomes[J]. Cancers (Basel), 2022, 14(22): 5705. |
45 | Kuhnt D, Becker A, Ganslandt O, et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance[J]. Neuro Oncol, 2011, 13(12): 1339. |
46 | Juarez-Chambi RM, Kut C, Rico-Jimenez JJ, et al. AI-assisted in situ detection of human glioma infiltration using a novel computational method for optical coherence tomography[J]. Clin Cancer Res, 2019, 25(21): 6329. |
47 | Rygh OM, Selbekk T, Torp SH, et al. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection[J]. Acta Neurochir (Wien), 2008, 150(10): 1033. |
48 | Inoue A, Watanabe H, Kondo T, et al. Usefulness of intraoperative rapid immunohistochemistry in the surgical treatment of brain tumors[J]. Neuropathology, 2023, 43(3): 209. |
49 | Kiesel B, Freund J, Reichert D, et al. 5-ALA in suspected low-grade gliomas: current role, limitations, and new approaches[J]. Front Oncol, 2021, 11: 699301. |
50 | Shabanzadeh Nejabad Z, Mabroukzadeh Kavari H, Saffar H, et al. Practice of IDH1, ATRX, and P53 immunohistochemistry in integrated diagnosis of adult diffuse gliomas: single center study[J]. Appl Immunohistochem Mol Morphol, 2023, 31(6): 390. |
51 | Zulkarnain S, Yunus N, Kandasamy R, et al. Evaluation study of intraoperative cytology smear and frozen section of glioma[J]. Asian Pac J Cancer Prev, 2020, 21(10): 3085. |
52 | Diplas BH, Liu H, Yang R, et al. Sensitive and rapid detection of TERT promoter and IDH mutations in diffuse gliomas[J]. Neuro Oncol, 2019, 21(4): 440. |
53 | Li J, Han Z, Ma CZ, et al. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection[J]. Ann Clin Transl Neurol, 2024, 11(8): 2176. |
54 | Li KS, Zhu QH, Yang JY, et al. Imaging and liquid biopsy for distinguishing true progression from pseudoprogression in gliomas, current advances and challenges[J]. Acad Radiol, 2024, 31(8): 3366. |
55 | Majchrzak-Celińska A, Paluszczak J, Kleszcz R, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients[J]. J Appl Genet, 2013, 54(3): 335. |
56 | N?r?xe DS, ?strup O, Yde CW, et al. Cell-free DNA in newly diagnosed patients with glioblastoma-a clinical prospective feasibility study[J]. Oncotarget, 2019, 10(43): 4397. |
57 | Fang HX, Shi RR, Chen D, et al. Intramolecular charge transfer enhancing strategy based MAO-a specific two-photon fluorescent probes for glioma cell/tissue imaging[J]. Chem Commun (Camb), 2021, 57(85): 11260. |
58 | Fang HX, Zhang H, Li L, et al. Rational design of a two-photon fluorogenic probe for visualizing monoamine oxidase?a activity in human glioma tissues[J]. Angew Chem Int Ed Engl, 2020, 59(19): 7536. |
59 | Jia YH, Xu SC, Han GX, et al. Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas[J]. Nat Biomed Eng, 2023, 7(3): 236. |
60 | Shi J, Zhang Y, Yao B, et al. Application of multiparametric intraoperative ultrasound in glioma surgery[J]. Biomed Res Int, 2021, 2021: 6651726. |
61 | Matsumae M, Nishiyama J, Kuroda K. Intraoperative Mr imaging during glioma resection[J]. Magn Reson Med Sci, 2022, 21(1): 148. |
62 | Cao C, Yin H, Yang B, et al. Intra-operative definition of glioma infiltrative margins by visualizing immunosuppressive tumor-associated macrophages[J]. Adv Sci (Weinh), 2023, 10(28): e2304020. |
63 | Yang GH, Zhang KZ, Qu XZ, et al. Ratiometric pH-responsive SERS strategy for glioma boundary determination[J]. Talanta, 2022, 250: 123750. |
64 | Cao C, Yin H, Yang B, et al. Intra-operative definition of glioma infiltrative margins by visualizing immunosuppressive tumor-associated macrophages[J]. Adv Sci (Weinh), 2023, 10(28): e2304020. |
65 | Jin WN, Fatehi M, Abhishek K, et al. Artificial intelligence in glioma imaging: challenges and advances[J]. J Neural Eng, 2020, 17(2): 021002. |
As a practical application of multidisciplinary integration, the rapid detection technology of glioma has become increasingly influential in the fields of society, science and technology and economy. This review covers multiple dimensions of rapid glioma detection, including technical application scenarios and future trends. First, this article traces the historical context of the field of rapid glioma detection, emphasizing the remarkable achievements and progress made in the past decade. Secondly, it describes the current popular rapid detection technology for glioma and its application in clinical practice. Finally, this article discusses the challenges of rapid glioma detection, and provides an outlook on the latest advances in this technology, as well as predictions for future developments. To sum up, this article aims to provide a perspective to better understand the current status and future trends in the field of rapid glioma detection technology.
","bibtexUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=750","abstractUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/10.3969/j.issn.2097-0005.2025.02.008","zuoZheCn_L":"喻志滔, 肖以磊","juanUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/Y2025","lanMu_en":"Reviews","qiUrl_en":"//www.pitakata.com/xuebao/EN/Y2025/V46/I2","zuoZhe_EN":"Zhitao YU1,2, Yilei XIAO2(Recent advances in rapid detection techniques for glioma
Zhitao YU, Yilei XIAO
Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences››2025, Vol. 46››Issue (2): 108-113.
Recent advances in rapid detection techniques for glioma
As a practical application of multidisciplinary integration, the rapid detection technology of glioma has become increasingly influential in the fields of society, science and technology and economy. This review covers multiple dimensions of rapid glioma detection, including technical application scenarios and future trends. First, this article traces the historical context of the field of rapid glioma detection, emphasizing the remarkable achievements and progress made in the past decade. Secondly, it describes the current popular rapid detection technology for glioma and its application in clinical practice. Finally, this article discusses the challenges of rapid glioma detection, and provides an outlook on the latest advances in this technology, as well as predictions for future developments. To sum up, this article aims to provide a perspective to better understand the current status and future trends in the field of rapid glioma detection technology.
glioma/rapid detection technology/latest developments/diagnosis
1 | Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a "state of the science" review[J].Neuro Oncol,2014,16(7): 896. |
2 | Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications[J].Cancer Discov,2021,11(3): 575. |
3 | Wang LM, Englander ZK, Miller ML, et al. Malignant glioma[J].Adv Exp Med Biol,2023,1405: 1. |
4 | Rafique Z, Awan MW, Iqbal S, et al. Diagnostic accuracy of magnetic resonance spectroscopy in predicting the grade of glioma keeping histopathology as the gold standard[J].Cureus,2022,14(2): e22056. |
5 | Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma[J].Cancer Rep (Hoboken),2019,2(6): e1216. |
6 | Kristensen BW, Priesterbach-Ackley LP, Petersen JK, et al. Molecular pathology of tumors of the central nervous system[J].Ann Oncol,2019,30(8): 1265. |
7 | Yang KY, Wu ZJ, Zhang H, et al. Glioma targeted therapy: insight into future of molecular approaches[J].Mol Cancer,2022,21(1): 39. |
8 | Xue H, Han Z, Li HY, et al. Application of intraoperative rapid molecular diagnosis in precision surgery for glioma: mimic the world health organization CNS5 integrated diagnosis[J].Neurosurgery,2023,92(4): 762. |
9 | ?ledzińska P, Bebyn MG, Furtak J, et al. Prognostic and predictive biomarkers in gliomas[J].Int J Mol Sci,2021,22(19): 10373. |
10 | Smith HL, Wadhwani N, Horbinski C. Major features of the 2021 WHO classification of CNS tumors[J].Neurotherapeutics,2022,19(6): 1691. |
11 | Chou FJ, Liu Y, Lang FC, et al. D-2-hydroxyglutarate in glioma biology[J].Cells,2021,10(9): 2345. |
12 | van den Bent MJ, Tesileanu CMS, Wick W, et al. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study[J].Lancet Oncol,2021,22(6): 813. |
13 | Maurer GD, Heller S, Wanka C, et al. Knockdown of the TP53-Induced glycolysis and apoptosis regulator (TIGAR) sensitizes glioma cells to hypoxia, irradiation and temozolomide[J].Int J Mol Sci,2019,20(5): 1061. |
14 | Wu SF, Li XL, Gao F, et al. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma[J].Neuro Oncol,2021,23(6): 920. |
15 | Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors[J].N Engl J Med,2005,353(19): 2012. |
16 | Hasanau T, Pisarev E, Kisil O, et al. Detection of TERT promoter mutations as a prognostic biomarker in gliomas: methodology, prospects, and advances[J].Biomedicines,2022,10(3): 728. |
17 | Alturki N, Umer M, Ishaq A, et al. Combining CNN features with voting classifiers for optimizing performance of brain tumor classification[J].Cancers (Basel),2023,15(6): 1767. |
18 | Luo AQ, Meng M, Wang GY, et al. Myeloid-derived suppressor cells recruited by chemokine (C-C motif) ligand 3 promote the progression of breast cancer via phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin signaling[J].J Breast Cancer,2020,23(2): 141. |
19 | Brahimaj BC, Kochanski RB, Pearce JJ, et al. Structural and functional imaging in glioma management[J].Neurosurgery,2021,88(2): 211. |
20 | Henson JW, Gaviani P, Gonzalez RG. MRI in treatment of adult gliomas[J].Lancet Oncol,2005,6(3): 167. |
21 | Li GZ, Li L, Li YM, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J].Brain,2022,145(3): 1151. |
22 | Togao O, Hiwatashi A, Yamashita K, et al. Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion Mr imaging[J].Neuro Oncol,2016,18(1): 132. |
23 | Spicer CD, Jumeaux C, Gupta B, et al. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications[J].Chem Soc Rev,2018,47(10): 3574. |
24 | Wu YY, Hu DH, Gao DY, et al. Miniature NIR-II nanoprobes for active-targeted phototheranostics of brain tumors[J].Adv Healthc Mater,2022,11(23): e2202379. |
25 | Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives[J].Biomark Res,2023,11(1): 35. |
26 | Yang YH, He MZ, Li T, et al. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis[J].Neurosurg Rev,2019,42(2): 185. |
27 | van Dellen JR, Danziger A. Failure of computerized tomography to differentiate between radiation necrosis and cerebral tumour[J].S Afr Med J,1978,53(5): 171. |
28 | Bergstr?m M, Collins VP, Ehrin E, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine[J].J Comput Assist Tomogr,1983,7(6): 1062. |
29 | Rachinger W, Goetz C, P?pperl G, et al. Positron emission tomography with O-(2-[18F]flouroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas[J].Neurosurgery,2005,57(3): 505. |
30 | Singnurkar A, Poon R, Detsky J. 18F-FET-PET imaging in high-grade gliomas and brain metastases: a systematic review and meta-analysis[J].J Neurooncol,2023,161(1): 1. |
31 | Galldiks N, Stoffels G, Filss CP, et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis[J].J Nucl Med,2012,53(9): 1367. |
32 | Vettermann F, Suchorska B, Unterrainer M, et al. Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic 18F-FET PET[J].Eur J Nucl Med Mol Imaging,2019,46(12): 2581. |
33 | Pigeon H, Pérès EA, Truillet C, et al. TSPO-PET and diffusion-weighted MRI for imaging a mouse model of infiltrative human glioma[J].Neuro Oncol,2019,21(6): 755. |
34 | Arnold M, Rutherford MJ, Bardot A, et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): a population-based study[J].Lancet Oncol,2019,20(11): 1493. |
35 | Marchetti L, Novelli F, Tanno B, et al. Peptide-functionalized and drug-loaded tomato bushy stunt virus nanoparticles counteract tumor growth in a mouse model of shh-dependent medulloblastoma[J].Int J Mol Sci,2023,24(10): 8911. |
36 | Xu SB, Zhang GX, Zhang JM, et al. Advances in brain tumor therapy based on the magnetic nanoparticles[J].Int J Nanomedicine,2023,18: 7803. |
37 | 陈雯琳, 王月坤, 刘千舒, 等. 2022年度我国脑胶质瘤领域研究进展[J].协和医学杂志,2023,14(5): 983. |
38 | Wolter M, Felsberg J, Malzkorn B, et al. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas[J].Acta Neuropathol Commun,2022,10(1): 42. |
39 | Fujioka Y, Hata N, Akagi Y, et al. Molecular diagnosis of diffuse glioma using a chip-based digital PCR system to analyze IDH, TERT, and H3 mutations in the cerebrospinal fluid[J].J Neurooncol,2021,152(1): 47. |
40 | Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid[J].Nature,2019,565(7741): 654. |
41 | Yan DM, Yu YP, Ni QW, et al. The overexpression and clinical significance of TBX15 in human gliomas[J].Sci Rep,2023,13(1): 9771. |
42 | Xu H, Xia YK, Li CJ, et al. Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry[J].Lab Invest,2019,99(4): 588. |
43 | Zhang J, Mu N, Liu LH, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J].Biosens Bioelectron,2021,185: 113241. |
44 | Chanbour H, Chotai S. Review of intraoperative adjuncts for maximal safe resection of gliomas and its impact on outcomes[J].Cancers (Basel),2022,14(22): 5705. |
45 | Kuhnt D, Becker A, Ganslandt O, et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance[J].Neuro Oncol,2011,13(12): 1339. |
46 | Juarez-Chambi RM, Kut C, Rico-Jimenez JJ, et al. AI-assisted in situ detection of human glioma infiltration using a novel computational method for optical coherence tomography[J].Clin Cancer Res,2019,25(21): 6329. |
47 | Rygh OM, Selbekk T, Torp SH, et al. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection[J].Acta Neurochir (Wien),2008,150(10): 1033. |
48 | Inoue A, Watanabe H, Kondo T, et al. Usefulness of intraoperative rapid immunohistochemistry in the surgical treatment of brain tumors[J].Neuropathology,2023,43(3): 209. |
49 | Kiesel B, Freund J, Reichert D, et al. 5-ALA in suspected low-grade gliomas: current role, limitations, and new approaches[J].Front Oncol,2021,11: 699301. |
50 | Shabanzadeh Nejabad Z, Mabroukzadeh Kavari H, Saffar H, et al. Practice of IDH1, ATRX, and P53 immunohistochemistry in integrated diagnosis of adult diffuse gliomas: single center study[J].Appl Immunohistochem Mol Morphol,2023,31(6): 390. |
51 | Zulkarnain S, Yunus N, Kandasamy R, et al. Evaluation study of intraoperative cytology smear and frozen section of glioma[J].Asian Pac J Cancer Prev,2020,21(10): 3085. |
52 | Diplas BH, Liu H, Yang R, et al. Sensitive and rapid detection of TERT promoter and IDH mutations in diffuse gliomas[J].Neuro Oncol,2019,21(4): 440. |
53 | Li J, Han Z, Ma CZ, et al. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection[J].Ann Clin Transl Neurol,2024,11(8): 2176. |
54 | Li KS, Zhu QH, Yang JY, et al. Imaging and liquid biopsy for distinguishing true progression from pseudoprogression in gliomas, current advances and challenges[J].Acad Radiol,2024,31(8): 3366. |
55 | Majchrzak-Celińska A, Paluszczak J, Kleszcz R, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients[J].J Appl Genet,2013,54(3): 335. |
56 | N?r?xe DS, ?strup O, Yde CW, et al. Cell-free DNA in newly diagnosed patients with glioblastoma-a clinical prospective feasibility study[J].Oncotarget,2019,10(43): 4397. |
57 | Fang HX, Shi RR, Chen D, et al. Intramolecular charge transfer enhancing strategy based MAO-a specific two-photon fluorescent probes for glioma cell/tissue imaging[J].Chem Commun (Camb),2021,57(85): 11260. |
58 | Fang HX, Zhang H, Li L, et al. Rational design of a two-photon fluorogenic probe for visualizing monoamine oxidase?a activity in human glioma tissues[J].Angew Chem Int Ed Engl,2020,59(19): 7536. |
59 | Jia YH, Xu SC, Han GX, et al. Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas[J].Nat Biomed Eng,2023,7(3): 236. |
60 | Shi J, Zhang Y, Yao B, et al. Application of multiparametric intraoperative ultrasound in glioma surgery[J].Biomed Res Int,2021,2021: 6651726. |
61 | Matsumae M, Nishiyama J, Kuroda K. Intraoperative Mr imaging during glioma resection[J].Magn Reson Med Sci,2022,21(1): 148. |
62 | Cao C, Yin H, Yang B, et al. Intra-operative definition of glioma infiltrative margins by visualizing immunosuppressive tumor-associated macrophages[J].Adv Sci (Weinh),2023,10(28): e2304020. |
63 | Yang GH, Zhang KZ, Qu XZ, et al. Ratiometric pH-responsive SERS strategy for glioma boundary determination[J].Talanta,2022,250: 123750. |
64 | Cao C, Yin H, Yang B, et al. Intra-operative definition of glioma infiltrative margins by visualizing immunosuppressive tumor-associated macrophages[J].Adv Sci (Weinh),2023,10(28): e2304020. |
65 | Jin WN, Fatehi M, Abhishek K, et al. Artificial intelligence in glioma imaging: challenges and advances[J].J Neural Eng,2020,17(2): 021002. |
/
〈 | 〉 |