国际肿瘤学杂志››2020,Vol. 47››Issue (9): 569-572.doi:10.3760/cma.j.cn371439-20200123-00080
收稿日期:
2020-01-23修回日期:
2020-05-13出版日期:
2020-09-08发布日期:
2020-10-27通讯作者:
梁俊琴 E-mail:zyeemail@163.com基金资助:
Sang Yingbing1, Liang Junqin2()
Received:
2020-01-23Revised:
2020-05-13Online:
2020-09-08Published:
2020-10-27Contact:
Liang Junqin E-mail:zyeemail@163.comSupported by:
摘要:
皮肤鳞状细胞癌(CSCC)是起源于表皮及其附属器角质形成细胞的一种恶性肿瘤,病因及发病机制复杂且尚不明确。CSCC的发病率在全球范围内总体上呈增长趋势,使得对其发病机制的研究日渐增多。表观遗传不改变基因组序列,通过DNA甲基化、组蛋白修饰、非编码RNA、染色质重塑等方式调控基因表达。其可逆、稳定的遗传特征将为CSCC发病机制研究提供新的思路。
桑莹冰, 梁俊琴. 皮肤鳞状细胞癌表观遗传学发病机制[J]. 国际肿瘤学杂志, 2020, 47(9): 569-572.
Sang Yingbing, Liang Junqin. Epigenetic pathogenesis of cutaneous squamous cell carcinoma[J]. Journal of International Oncology, 2020, 47(9): 569-572.
[1] | Venables ZC, Nijsten T, Wong KF, et al. Epidemiology of basal and cutaneous squamous cell carcinoma in the U.K.2013-15: a cohort study[J]. Br J Dermatol, 2019,181(3):474-482. DOI: 10.1111/bjd.17873. doi:10.1111/bjd.17873pmid:30864158 |
[2] | Stang A, Khil L, Kajüter H, et al. Incidence and mortality for cutaneous squamous cell carcinoma: comparison across three continents[J]. J Eur Acad Dermatol Venereol, 2019,33 Suppl 8: 6-10. DOI: 10.1111/jdv.15967. doi:10.1111/jdv.15318pmid:30811690 |
[3] | Umezono Y, Sato Y, Noto M, et al. Incidence rate of cutaneous squamous cell carcinoma is rapidly increasing in Akita Prefecture: urgent alert for super-aged society[J]. J Dermatol, 2019,46(3):259-262. DOI: 10.1111/1346-8138.14759. doi:10.1111/1346-8138.14759pmid:30614560 |
[4] | Hillen U, Leiter U, Haase S, et al. Advanced cutaneous squamous cell carcinoma: a retrospective analysis of patient profiles and treatment patterns—results of a non-interventional study of the DeCOG[J]. Eur J Cancer, 2018,96:34-43. DOI: 10.1016/j.ejca.2018.01.075. doi:10.1016/j.ejca.2018.01.075pmid:29665511 |
[5] | Ando M, Saito Y, Xu G, et al. Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers[J]. Nat Commun, 2019,10(1):2415. DOI: 10.1038/s41467-019-09937-w. doi:10.1038/s41467-019-10557-7pmid:31142745 |
[6] | Li J, Hu WX, Luo SQ, et al. Promoter methylation induced epigene-tic silencing of DAZAP2, a downstream effector of p38/MAPK pathway, in multiple myeloma cells[J]. Cell Signal, 2019,60:136-145. DOI: 10.1016/j.cellsig.2019.04.012. doi:10.1016/j.cellsig.2019.04.012pmid:31034872 |
[7] | Hervás-Marín D, Higgins F, Sanmartín O, et al. Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma[J]. PLoS One, 2019,14(12):e0223341. DOI: 10.1371/journal.pone.0223341. doi:10.1371/journal.pone.0223341pmid:31860637 |
[8] | Yang Y, Wu R, Sargsyan D, et al. UVB drives different stages of epigenome alterations during progression of skin cancer[J]. Cancer Lett, 2019,449:20-30. DOI: 10.1016/j.canlet.2019.02.010. doi:10.1016/j.canlet.2019.02.010pmid:30771437 |
[9] | Tam S, Yao CMK, Amit M, et al. Association of immunosuppression with outcomes of patients with cutaneous squamous cell carcinoma of the head and neck[J]. JAMA Otolaryngol Head Neck Surg, 2019,146(2):128-135. DOI: 10.1001/jamaoto.2019.3751. doi:10.1001/jamaoto.2019.3751pmid:31804658 |
[10] | Jambusaria-Pahlajani A, Crow LD, Lowenstein S, et al. Predicting skin cancer in organ transplant recipients: development of the SUNTRAC screening tool using data from a multicenter cohort study[J]. Transpl Int, 2019,12:1259-1267. DOI: 10.1111/tri.13493. |
[11] | Peters FS, Peeters AMA, Mandaviya PR, et al. Differentially methy-lated regions in T cells identify kidney transplant patients at risk for de novo skin cancer[J]. Clin Epigenetics, 2018,10:81. DOI: 10.1186/s13148-018-0519-7. doi:10.1186/s13148-018-0519-7pmid:29946375 |
[12] | Peters FS, Peeters AMA, van den Bosch TPP, et al. Disrupted regulation of serpinB9 in circulating T cells is associated with an increased risk for post-transplant skin cancer[J]. Clin Exp Immunol, 2019,197(3):341-351. DOI: 10.1111/cei.13309. doi:10.1111/cei.13309pmid:31059128 |
[13] | Gao X, Cheng Z, Yuan H, et al. K-Ras-PI3K regulates H3K56ac through PCAF to elevate the occurrence and growth of liver cancer[J]. J Cell Physiol, 2020,235(4):3905-3915. DOI: 10.1002/jcp.29284. doi:10.1002/jcp.v235.4pmid:31642074 |
[14] | Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR-Ras-Erk signalling and suppresses increased Ras-Erk signaling-induced tumour formation in mice[J]. J Pathol, 2019,249(1):39-51. DOI: 10.1002/path.5279. doi:10.1002/path.5279pmid:30953353 |
[15] | McHugh A, Fernandes K, South AP, et al. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity[J]. Oncotarget, 2018,9(29):20265-20281. DOI: 10.18632/oncotarget.24750. doi:10.18632/oncotarget.24750pmid:29755650 |
[16] | McHugh A, Fernandes K, Chinner N, et al. The identification of potential therapeutic targets for cutaneous squamous cell carcinoma[J]. J Invest Dermatol, 2020,140(6):1154-1165.e5. DOI: 10.1016/j.jid.2019.09.024. doi:10.1016/j.jid.2019.09.024pmid:31705877 |
[17] | Xu J, Meng Q, Li X, Yang H, et al. Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p[J]. Cancer Res, 2019,79(19):4882-4895. DOI: 10.1158/0008-5472.CAN-18-3880. doi:10.1158/0008-5472.CAN-18-3880pmid:31409641 |
[18] | Vidovic D, Huynh TT, Konda P, et al. ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells[J]. Cell Death Differ, 2020,27(1):363-378. DOI: 10.1038/s41418-019-0362-1. doi:10.1038/s41418-019-0362-1pmid:31197235 |
[19] | He K, Li WX, Guan D, et al. Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets[J]. Funct Integr Genomics, 2019,19(4):645-658. DOI: 10.1007/s10142-019-00670-7. pmid:30859354 |
[20] | Gong ZH, Zhou F, Shi C, et al. miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN[J]. Cell Mol Biol Lett, 2019,24:9. DOI: 10.1186/s11658-018-0131-z. doi:10.1186/s11658-018-0131-zpmid:30891072 |
[21] | Sand M, Bechara FG, Sand D, et al. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma[J]. Epigenomics, 2016,8(4):501-518. DOI: 10.2217/epi-2015-0012. doi:10.2217/epi-2015-0012pmid:27067026 |
[22] | Yu GJ, Sun Y, Zhang DW, et al. Long non-coding RNA HOTAIR functions as a competitive endogenous RNA to regulate PRAF2 expression by sponging miR-326 in cutaneous squamous cell carcinoma[J]. Cancer Cell Int, 2019,19:270. DOI: 10.1186/s12935-019-0992-x. doi:10.1186/s12935-019-0992-xpmid:31649487 |
[1] | 张俊鹏, 于燕燕, 李宝生.lncRNA、circRNA调控食管鳞状细胞癌放化疗敏感性的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 185-189. |
[2] | 王裴, 崔曼莉, 张明鑫.非编码RNA在结直肠癌早期诊断中的应用[J]. 国际肿瘤学杂志, 2021, 48(8): 502-506. |
[3] | 邓波儿, 孔为民.子宫内膜癌的表观遗传学研究进展[J]. 国际肿瘤学杂志, 2021, 48(3): 184-188. |
[4] | 何苗, 范奎, 曹芳.表观遗传与肺癌耐药[J]. 国际肿瘤学杂志, 2021, 48(10): 622-626. |
[5] | 肖唱, 辛彦.非编码RNA在胃癌中的研究进展[J]. 国际肿瘤学杂志, 2019, 46(9): 553-557. |
[6] | 张芳雍, 吴帆.外泌体非编码RNA在肝癌液体活检中的研究进展[J]. 国际肿瘤学杂志, 2019, 46(6): 378-381. |
[7] | 赵娟, 康晓静. 人端粒酶逆转录酶与皮肤恶性肿瘤[J]. 国际肿瘤学杂志, 2019, 46(10): 634-637. |
[8] | 李智,许静凯,张博.长非编码RNA在肿瘤中的作用机制[J]. 国际肿瘤学杂志, 2018, 45(4): 220-222. |
[9] | 安亮,李俊,陈玉祥,方向.RASSF2A基因甲基化与大肠癌的相关性分析[J]. 国际肿瘤学杂志, 2018, 45(2): 77-79. |
[10] | 何晓琴,徐细明.竞争性内源RNA在原发性肝癌中的研究进展[J]. 国际肿瘤学杂志, 2017, 44(3): 231-234. |
[11] | 赵义, 燕善军, 王启之.UCA1在消化道肿瘤中的表达及作用机制[J]. 国际肿瘤学杂志, 2017, 44(2): 142-144. |
[12] | 顾漱溟,徐岷.长非编码RNA UCA1作为竞争性内源RNA在调控肿瘤 发生发展中的作用[J]. 国际肿瘤学杂志, 2017, 44(12): 911-913. |
[13] | 李文清,侯劲松.上皮间质转化的表观遗传调控[J]. 国际肿瘤学杂志, 2017, 44(12): 918-921. |
[14] | 张国华,张文波,蒋鹏程.长非编码RNA在胃癌中的研究进展[J]. 国际肿瘤学杂志, 2017, 44(12): 937-939. |
[15] | 潘磊, 梁炜, 付敏, 钱晖, 许文荣, 蒋鹏程, 张徐.长非编码RNA在消化系统肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2016, 43(8): 706-710. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||