国际肿瘤学杂志››2020,Vol. 47››Issue (12): 756-760.doi:10.3760/cma.j.cn371439-20200306-00115
收稿日期:
2020-03-06修回日期:
2020-06-01出版日期:
2020-12-08发布日期:
2021-01-28通讯作者:
李宏江 E-mail:lihongjiang@sohu.com基金资助:
Liu Hong1,2, Wu Jian2, Li Hongjiang1(), Yang Xiaoqin1
Received:
2020-03-06Revised:
2020-06-01Online:
2020-12-08Published:
2021-01-28Contact:
Li Hongjiang E-mail:lihongjiang@sohu.comSupported by:
摘要:
微小RNA(miRNA)在乳腺癌患者中异常表达,可应用于乳腺癌的诊断、治疗、监测等。乳腺癌分子分型不同,临床分期不同,其miRNA表达谱存在显著差异。在乳头溢液、血液、肿瘤组织中进行多种miRNA的联合检测,可综合评估疾病状态,且有助于乳腺癌的早期诊断与治疗。监测治疗后miRNA水平的变化,有助于评估乳腺癌患者治疗效果,监测疾病预后,为疾病复发转移提供及时有效的治疗。靶向调节与耐药相关的miRNA,是乳腺癌治疗新的机遇。
刘虹, 吴剑, 李宏江, 羊晓勤. 微小RNA在乳腺癌检测、治疗、耐药及预后中的研究进展[J]. 国际肿瘤学杂志, 2020, 47(12): 756-760.
Liu Hong, Wu Jian, Li Hongjiang, Yang Xiaoqin. Advances of microRNA in the detection, treatment, drug resistance and prognosis of breast cancer[J]. Journal of International Oncology, 2020, 47(12): 756-760.
[1] | Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence[J]. Breast Cancer Res Treat, 2016,159(3):395-406. DOI: 10.1007/s10549-016-3947-0. doi:10.1007/s10549-016-3947-0pmid:27562585 |
[2] | Hemmatzadeh M, Mohammadi H, Jadidi-Niaragh F, et al. The role of oncomirs in the pathogenesis and treatment of breast cancer[J]. Biomed Pharmacother, 2016,78:129-139. DOI: 10.1016/j.biopha.2016.01.026. doi:10.1016/j.biopha.2016.01.026pmid:26898434 |
[3] | Asiaf A, Ahmad ST, Arjumand W, et al. MicroRNAs in breast can-cer: diagnostic and therapeutic potential[J]. Methods Mol Biol, 2018,1699:23-43. DOI: 10.1007/978-1-4939-7435-1_2. doi:10.1007/978-1-4939-7435-1_2pmid:29086366 |
[4] | Ding L, Gu H, Xiong X, et al. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer[J]. Cells, 2019,8(12):1492. DOI: 10.3390/cells8121492. doi:10.3390/cells8121492 |
[5] | Zhang K, Wang YW, Wang YY, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling[J]. Gene, 2017,619:10-20. DOI: 10.1016/j.gene.2017.03.038. doi:10.1016/j.gene.2017.03.038pmid:28359916 |
[6] | Tahiri A, Aure MR, Kristensen VN. MicroRNA networks in breast cancer cells[J]. Methods Mol Biol, 2018,1711:55-81. DOI: 10.1007/978-1-4939-7493-1_4. doi:10.1007/978-1-4939-7493-1_4pmid:29344885 |
[7] | Rohan T, Ye K, Wang Y, et al. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer[J]. PLoS One, 2018,13(2):e0191814. DOI: 10.1371/journal.pone.0191814. doi:10.1371/journal.pone.0191814pmid:29432432 |
[8] | Prabhu KS, Raza A, Karedath T, et al. Non-coding RNAs as regulators and markers for targeting of breast cancer and cancer stem cells[J]. Cancers (Basel), 2020,12(2):351. DOI: 10.3390/cancers12020351. doi:10.3390/cancers12020351 |
[9] | Moi L, Braaten T, AI-Shibli K, et al. Differential expression of the miR-17-92 cluster and miR-17 family in breast cancer according to tumor type; results from the Norwegian Women and Cancer (NOWAC) study[J]. J Transl Med, 2019,17(1):334. DOI: 10.1186/s12967-019-2086-x. doi:10.1186/s12967-019-2086-xpmid:31581940 |
[10] | Xiao S, Zhu H, Luo J, et al. miR 425 5p is associated with poor prognosis in patients with breast cancer and promotes cancer cell progression by targeting PTEN[J]. Oncol Rep, 2019,42(6):2550-2560. DOI: 10.3892/or.2019.7371. doi:10.3892/or.2019.7371pmid:31638259 |
[11] | Han JG, Jiang YD, Zhang CH, et al. A novel panel of serum miR-21/miR-155/miR-365 as a potential diagnostic biomarker for breast cancer[J]. Ann Surg Treat Res, 2017,92(2):55-66. DOI: 10.4174/astr.2017.92.2.55. doi:10.4174/astr.2017.92.2.55pmid:28203552 |
[12] | Cava C, Novello C, Martelli C, et al. Theranostic application of miR-429 in HER2+breast cancer[J]. Theranostics, 2020,10(1):50-61. DOI: 10.7150/thno.36274. doi:10.7150/thno.36274pmid:31903105 |
[13] | Grimaldi AM, Incoronato M. Clinical translatability of "identified" circulating miRNAs for diagnosing breast cancer: overview and update[J]. Cancers (Basel), 2019,11(7):901. DOI: 10.3390/cancers11070901. doi:10.3390/cancers11070901 |
[14] | Rizzo FM, Meyer T. Liquid biopsies for neuroendocrine tumors: circulating tumor cells, DNA, and microRNAs[J]. Endocrinol Metab Clin North Am, 2018,47(3):471-483. DOI: 10.1016/j.ecl.2018.04.002. doi:10.1016/j.ecl.2018.04.002pmid:30098711 |
[15] | Armand-Labit V, Pradines A. Circulating cell-free microRNAs as clinical cancer biomarkers[J]. Biomol Concepts, 2017,8(2):61-81. DOI: 10.1515/bmc-2017-0002. doi:10.1515/bmc-2017-0002pmid:28448269 |
[16] | Fehlmann T, Ludwig N, Backes C, et al. Distribution of microRNA biomarker candidates in solid tissues and body fluids[J]. RNA Biol, 2016,13(11):1084-1088. DOI: 10.1080/15476286.2016.1234658. doi:10.1080/15476286.2016.1234658pmid:27687236 |
[17] | Loke SY, Munusamy P, Koh GL, et al. A circulating miRNA signature for stratification of breast lesions among women with abnormal screening mammograms[J]. Cancers (Basel), 2019,11(12):1872. DOI: 10.3390/cancers11121872. doi:10.3390/cancers11121872 |
[18] | McAnena P, Tanriverdi K, Curran C, et al. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer[J]. BMC Cancer, 2019,19(1):436. DOI: 10.1186/s12885-019-5636-y. doi:10.1186/s12885-019-5636-ypmid:31077182 |
[19] | Best MG, Sol N, Kooi I, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics[J]. Cancer Cell, 2015,28(5):666-676. DOI: 10.1016/j.ccell.2015.09.018. doi:10.1016/j.ccell.2015.09.018pmid:26525104 |
[20] | Zhang K, Zhao S, Wang Q, et al. Identification of microRNAs in nipple discharge as potential diagnostic biomarkers for breast cancer[J]. Ann Surg Oncol, 2015,22 Suppl 3: S536-S544. DOI: 10.1245/s10434-015-4586-0. |
[21] | Do Canto LM, Marian C, Willey S, et al. MicroRNA analysis of breast ductal fluid in breast cancer patients[J]. Int J Oncol, 2016,48(5):2071-2078. DOI: 10.3892/ijo.2016.3435. doi:10.3892/ijo.2016.3435pmid:26984519 |
[22] | Gomes BC, Santos B, Rueff J, et al. Methods for studying micro-RNA expression and their targets in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissues[J]. Methods Mol Biol, 2016,1395:189-205. DOI: 10.1007/978-1-4939-3347-1_11. doi:10.1007/978-1-4939-3347-1_11pmid:26910075 |
[23] | Pardini B, Sabo AA, Birolo G, et al. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies[J]. Cancers (Basel), 2019,11(8):1170. DOI: 10.3390/cancers11081170. doi:10.3390/cancers11081170 |
[24] | Jayaraj R, Nayagam SG, Kar A, et al. Clinical theragnostic relationship between drug-resistance specific miRNA expressions, chemotherapeutic resistance, and sensitivity in breast cancer: a systematic review and meta-analysis[J]. Cells, 2019,8(10):1250. DOI: 10.3390/cells8101250. doi:10.3390/cells8101250 |
[25] | Chen J, Tian W, He H, et al. Downregulation of miR 200c 3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2[J]. Oncol Rep, 2018,40(6):3821-3829. DOI: 10.3892/or.2018.6735. doi:10.3892/or.2018.6735pmid:30272330 |
[26] | Guan X, Gu S, Yuan M, et al. MicroRNA-33a-5p overexpression sensitizes triple-negative breast cancer to doxorubicin by inhibiting eIF5A2 and epithelial-mesenchymal transition[J]. Oncol Lett, 2019,18(6):5986-5994. DOI: 10.3892/ol.2019.10984. doi:10.3892/ol.2019.10984pmid:31788073 |
[27] | Wang G, Dong Y, Liu H, et al. Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1[J]. Oncol Lett, 2019,18(4):3837-3844. DOI: 10.3892/ol.2019.10697. doi:10.3892/ol.2019.10697pmid:31579087 |
[28] | Duan WJ, Bi PD, Ma Y, et al. MiR-512-3p regulates malignant tumor behavior and multi-drug resistance in breast cancer cells via targeting Livin[J]. Neoplasma. 2020,67(1):102-110. DOI: 10.4149/neo_2019_190106N18. doi:10.4149/neo_2019_190106N18pmid:31777256 |
[29] | Medarova Z, Pantazopoulos P, Yoo B. Screening of potential miRNA therapeutics for the prevention of multi-drug resistance in cancer cells[J]. Sci Rep, 2020,10(1):1970. DOI: 10.1038/s41598-020-58919-2. doi:10.1038/s41598-020-58919-2pmid:32029822 |
[30] | Ueda S, Takanashi M, Sudo K, et al. miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy[J]. Lab Invest, 2020,100(6):863-873. DOI: 10.1038/s41374-020-0409-4. doi:10.1038/s41374-020-0409-4pmid:32066826 |
[31] | Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells[J]. J Exp Clin Cancer Res, 2019,38(1):414. DOI: 10.1186/s13046-019-1404-8. doi:10.1186/s13046-019-1404-8pmid:31601253 |
[32] | Hou L, Zhao Y, Song GQ, et al. Interfering cellular lactate homeostasis overcomes Taxol resistance of breast cancer cells through the microRNA-124-mediated lactate transporter (MCT1) inhibition[J]. Cancer Cell Int, 2019,19:193. DOI: 10.1186/s12935-019-0904-0. doi:10.1186/s12935-019-0904-0pmid:31367191 |
[33] | Zhao C, Ling X, Li X, et al. MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDD1[J]. Breast Cancer, 2019,26(6):817-825. DOI: 10.1007/s12282-019-00989-w. doi:10.1007/s12282-019-00989-wpmid:31243644 |
[34] | Ruan L, Qian X. MiR-16-5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway[J]. Biosci Rep, 2019,39(8): BSR20191611. DOI: 10.1042/BSR20191611. doi:10.1042/BSR20190720pmid:31366565 |
[35] | Sereno M, Haskó J, Molnár K, et al. Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization[J]. Mol Oncol, 2020,14(3):520-538. DOI: 10.1002/1878-0261.12632. doi:10.1002/1878-0261.12632pmid:31930767 |
[36] | Wang Z, Li TE, Chen M, et al. miR-106b-5p contributes to the lung metastasis of breast cancer via targeting CNN1 and regulating Rho/ROCK1 pathway[J]. Aging (Albany NY), 2020,12(2):1867-1887. DOI: 10.18632/aging.102719. |
[37] | Martinez-Gutierrez AD, Catalan OM, Vázquez-Romo R, et al. miRNA profile obtained by next generation sequencing in metastatic breast cancer patients is able to predict the response to systemic treatments[J]. Int J Mol Med, 2019,44(4):1267-1280. DOI: 10.3892/ijmm.2019.4292 doi:10.3892/ijmm.2019.4292pmid:31364724 |
[38] | Estevão-Pereira H, Lobo J, Salta S, et al. Overexpression of circulating miR-30b-5p identifies advanced breast cancer[J]. J Transl Med, 2019,17(1):435. DOI: 10.1186/s12967-019-02193-y. doi:10.1186/s12967-019-02193-ypmid:31888645 |
[39] | Lasham A, Fitzgerald SJ, Knowlton N, et al. A predictor of early disease recurrence in patients with breast cancer using a cell-free RNA and protein liquid biopsy[J]. Clin Breast Cancer, 2020,20(2):108-116. DOI: 10.1016/j.clbc.2019.07.003. doi:10.1016/j.clbc.2019.07.003pmid:31607655 |
[40] | Ozawa PMM, Vieira E, Lemos DS, et al. Identification of miRNAs enriched in extracellular vesicles derived from serum samples of breast cancer patients[J]. Biomolecules, 2020,10(1):150. DOI: 10.3390/biom10010150. doi:10.3390/biom10010150 |
[41] | Rohan TE, Wang T, Weinmann S, et al. A miRNA expression signature in breast tumor tissue is associated with risk of distant metastasis[J]. Cancer Res, 2019,79(7):1705-1713. DOI: 10.1158/0008-5472.CAN-18-2779. doi:10.1158/0008-5472.CAN-18-2779pmid:30760517 |
[42] | Lai J, Chen B, Zhang G, et al. Identification of a novel microRNA recurrence-related signature and risk stratification system in breast cancer[J]. Aging (Albany NY), 2019,11(18):7525-7536. DOI: 10.18632/aging.102268. |
[43] | Amorim M, Lobo J, Fontes-Sousa M, et al. Predictive and prognostic value of selected microRNAs in luminal breast cancer[J]. Front Genet, 2019,10:815. DOI: 10.3389/fgene.2019.00815. doi:10.3389/fgene.2019.00815pmid:31572437 |
[44] | Kanchan RK, Siddiqui JA, Mahapatra S, et al. microRNAs orchestrate pathophysiology of breast cancer brain metastasis: advances in therapy[J]. Mol Cancer, 2020,19(1):29. DOI: 10.1186/s12943-020-1140-x. doi:10.1186/s12943-020-1140-xpmid:32059676 |
[45] | Michael IP, Saghafinia S, Hanahan D. A set of microRNAs coordinately controls tumorigenesis, invasion, and metastasis[J]. Proc Natl Acad Sci U S A, 2019,116(48):24184-24195. DOI: 10.1073/pnas.1913307116. doi:10.1073/pnas.1913307116pmid:31704767 |
[46] | Hoseinbeyki M, Taha MF, Javeri A. miR-16 enhances miR-302/367-induced reprogramming and tumor suppression in breast cancer cells[J]. IUBMB Life, 2020,72(5):1075-1086. DOI: 10.1002/iub.2249. doi:10.1002/iub.2249pmid:32057163 |
[47] | Alizadeh S, Isanejad A, Sadighi S, et al. Effect of a high-intensity interval training on serum microRNA levels in women with breast cancer undergoing hormone therapy. A single-blind randomized trial[J]. Ann Phys Rehabil Med, 2019,62(5):329-335. DOI: 10.1016/j.rehab.2019.07.001. doi:10.1016/j.rehab.2019.07.001pmid:31400480 |
[48] | Sun WM, Tao W, Li JC, et al. MicroRNA-296 functions as a tumor suppressor in breast cancer by targeting FGFR1 and regulating the Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019,23(23):10422-10432. DOI: 10.26355/eurrev_201912_19681. doi:10.26355/eurrev_201912_19681pmid:31841196 |
[49] | Ansari MA, Thiruvengadam M, Farooqui Z, et al. Nanotechnology,insilico and endocrine-based strategy for delivering paclitaxel and miRNA: prospects for the therapeutic management of breast cancer[J]. Semin Cancer Biol, 2019,S1044-579X(19) 30422-5. DOI: 10.1016/j.semcancer.2019.12.022. |
[50] | Umeh-Garcia M, Simion C, Ho PY, et al. A novel bioengineered miR-127 prodrug suppresses the growth and metastatic potential of triple-negative breast cancer cells[J]. Cancer Res, 2020,80(3):418-429. DOI: 10.1158/0008-5472.CAN-19-0656. doi:10.1158/0008-5472.CAN-19-0656pmid:31694904 |
[51] | Das PK, Siddika MA, Asha SY, et al. MicroRNAs, a promising target for breast cancer stem cells[J]. Mol Diagn Ther, 2020,24(1):69-83. DOI: 10.1007/s40291-019-00439-5. doi:10.1007/s40291-019-00439-5pmid:31758333 |
[52] | Zou Y, Lin X, Bu J, et al. Timeless-stimulated miR-5188-FOXO1/β-Catenin-c-Jun feedback loop promotes stemness via ubiquitination of β-Catenin in breast cancer[J]. Mol Ther, 2020,28(1):313-327. DOI: 10.1016/j.ymthe.2019.08.015. doi:10.1016/j.ymthe.2019.08.015pmid:31604679 |
[53] | Grinán-Lisón C, Olivares-Urbano MA, Jiménez G, et al. miRNAs as radio-response biomarkers for breast cancer stem cells[J]. Mol Oncol, 2020,14(3):556-570. DOI: 10.1002/1878-0261.12635. doi:10.1002/1878-0261.12635pmid:31930680 |
[54] | Taslim C, Weng DY, Brasky TM, et al. Discovery and replication of microRNAs for breast cancer risk using genome-wide profiling[J]. Oncotarget, 2016,7(52):86457-86468. DOI: 10.18632/oncotarget.13241. doi:10.18632/oncotarget.13241pmid:27833082 |
[55] | Izzotti A, Carozzo S, Pulliero A, et al. Extracellular microRNA in liquid biopsy: applicability in cancer diagnosis and prevention[J]. Am J Cancer Res, 2016,6(7):1461-1493. pmid:27508091 |
[56] | Akbulut H, Ersoy YE, Coskunpinar E, et al. The role of miRNAs as a predictor of multicentricity in breast cancer[J]. Mol Biol Rep, 2019,46(2):1787-1796. DOI: 10.1007/s11033-019-04629-6. doi:10.1007/s11033-019-04629-6pmid:30707415 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[3] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 彭琴, 蔡玉婷, 王伟.KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[6] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[7] | 陈波光, 王苏贵, 张永杰.血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[8] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[9] | 黄镇, 陈永顺.循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. |
[10] | 王景, 许文婷.中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[11] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英.HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[12] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰.miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[13] | 王文德, 曾德.乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[14] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[15] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳.沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||