国际肿瘤学杂志››2021,Vol. 48››Issue (2): 121-124.doi:10.3760/cma.j.cn371439-20200615-00024
收稿日期:
2020-06-15修回日期:
2020-07-14出版日期:
2021-02-08发布日期:
2021-03-11通讯作者:
王华庆 E-mail:huaqingw@163.comQiao Wei1, Song Teng2, Chen Xinrui1, Wang Huaqing2()
Received:
2020-06-15Revised:
2020-07-14Online:
2021-02-08Published:
2021-03-11Contact:
Wang Huaqing E-mail:huaqingw@163.com摘要:
磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/雷帕霉素靶蛋白(mTOR)信号通路过度激活与恶性肿瘤的发生发展及临床预后密切相关,以该信号通路为靶点的治疗药物可以有效抑制肿瘤的进展。目前美国食品和药物监督管理局批准了3种药物(CAL-101、BAY80-6946、IPI-145)用于治疗复发和难治性惰性非霍奇金淋巴瘤,临床上显示出显著的疗效和可控的安全性。
乔薇, 宋腾, 陈馨蕊, 王华庆. PI3K信号通路过度激活对非霍奇金淋巴瘤患者预后的影响及其靶向药物疗效[J]. 国际肿瘤学杂志, 2021, 48(2): 121-124.
Qiao Wei, Song Teng, Chen Xinrui, Wang Huaqing. Effect of excessive activation of PI3K signaling pathway on the prognosis of patients with non-Hodgkin lymphoma and the efficacy of targeted drugs[J]. Journal of International Oncology, 2021, 48(2): 121-124.
[1] | Jain T, Sauter CS, Shah GL, et al. Safety and feasibility of chimeric antigen receptor T cell therapy after allogeneic hematopoietic cell transplantation in relapsed/refractory B cell non-Hodgkin lymphoma[J]. Leukemia, 2019,33(10):2540-2544. DOI: 10.1038/s41375-019-0476-y. doi:10.1038/s41375-019-0476-ypmid:31114023 |
[2] | Yuan T, Yang Y, Chen J, et al. Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD[J]. Leukemia, 2017,31(11):2355-2364. DOI: 10.1038/leu.2017.80. doi:10.1038/leu.2017.80pmid:28280276 |
[3] | Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials[J]. Mol Cancer, 2019,18(1):26. DOI: 10.1186/s12943-019-0954-x. doi:10.1186/s12943-019-0954-xpmid:30782187 |
[4] | Sapon-Cousineau V, Sapon-Cousineau S, Assouline S. PI3K inhibitors and their role as novel agents for targeted therapy in lymphoma[J]. Curr Treat Options Oncol, 2020,21(6):51. DOI: 10.1007/s11864-020-00746-8. doi:10.1007/s11864-020-00746-8pmid:32356174 |
[5] | Manning BD, Toker A. AKT/PKB signaling: navigating the network[J]. Cell, 2017,169(3):381-405. DOI: 10.1016/j.cell.2017.04.001. doi:10.1016/j.cell.2017.04.001pmid:28431241 |
[6] | Luongo F, Colonna F, Calapà F, et al. PTEN tumor-suppressor: the dam of stemness in cancer[J]. Cancers (Basel), 2019,11(8):1076. DOI: 10.3390/cancers11081076. doi:10.3390/cancers11081076 |
[7] | Papa A, Wan L, Bonora M, et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function[J]. Cell, 2014,157(3):595-610. DOI: 10.1016/j.cell.2014.03.027. doi:10.1016/j.cell.2014.03.027 |
[8] | Li C, Xu Y, Xin P, et al. Role and mechanism of PTEN in Burkitt's lymphoma[J]. Oncol Rep, 2020,43(2):481-490. DOI: 10.3892/or.2020.7457. doi:10.3892/or.2020.7457pmid:31922234 |
[9] | Wang X, Cao X, Sun R, et al. Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in de novo diffuse large B-cell lymphoma[J]. Neoplasia, 2018,20(6):574-593. DOI: 10.1016/j.neo.2018.03.002. doi:10.1016/j.neo.2018.03.002pmid:29734016 |
[10] | Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation[J]. Nat Rev Immunol, 2003,3(4):317-330. DOI: 10.1038/nri1056. doi:10.1038/nri1056pmid:12669022 |
[11] | Cui W, Cai Y, Wang W, et al. Frequent copy number variations of PI3K/AKT pathway and aberrant protein expressions of PI3K subunits are associated with inferior survival in diffuse large B cell lymphoma[J]. J Transl Med, 2014,12:10. DOI: 10.1186/1479-5876-12-10. doi:10.1186/1479-5876-12-10pmid:24418330 |
[12] | 满杰, 陈莲, 翟晓文, 等. p-AKT/p-mTOR蛋白在儿童Burkitt淋巴瘤中的表达及其与预后的关系[J]. 中华病理学杂志, 2020,49(2):156-161. DOI: 10.3760/cma.j.issn.0529-5807.2020.02.010. |
[13] | Hong JY, Hong ME, Choi MK, et al. The impact of activated p-AKT expression on clinical outcomes in diffuse large B-cell lymphoma: a clinicopathological study of 262 cases[J]. Ann Oncol, 2014,25(1):182-188. DOI: 10.1093/annonc/mdt530. doi:10.1093/annonc/mdt530pmid:24356628 |
[14] | Markham A. Idelalisib: first global approval[J]. Drugs, 2014,74(14):1701-1707. DOI: 10.1007/s40265-014-0285-6. doi:10.1007/s40265-014-0285-6 |
[15] | Gopal AK, Kahl BS, de Vos S, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma[J]. N Engl J Med, 2014,370(11):1008-1018. DOI: 10.1056/NEJMoa1314583. doi:10.1056/NEJMoa1314583pmid:24450858 |
[16] | Eyre TA, Osborne WL, Gallop-Evans E, et al. Results of a multicentre UK-wide compassionate use programme evaluating the efficacy of idelalisib monotherapy in relapsed, refractory follicular lymphoma[J]. Br J Haematol, 2018,181(4):555-559. DOI: 10.1111/bjh.14665. doi:10.1111/bjh.14665pmid:28342183 |
[17] | O'Brien SM, Lamanna N, Kipps TJ, et al. A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia[J]. Blood, 2015,126(25):2686-2694. DOI: 10.1182/blood-2015-03-630947. doi:10.1182/blood-2015-03-630947pmid:26472751 |
[18] | Jones JA, Robak T, Brown JR, et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial[J]. Lancet Haematol, 2017,4(3):e114-e126. DOI: 10.1016/s2352-3026(17)30019-4. doi:10.1016/S2352-3026(17)30019-4pmid:28257752 |
[19] | Gopal AK, Fanale MA, Moskowitz CH, et al. Phase Ⅱ study of idelalisib, a selective inhibitor of PI3Kδ, for relapsed/refractory classical Hodgkin lymphoma[J]. Ann Oncol, 2017,28(5):1057-1063. DOI: 10.1093/annonc/mdx028. doi:10.1093/annonc/mdx028pmid:28327905 |
[20] | Dreyling M, Morschhauser F, Bouabdallah K, et al. Phase Ⅱ study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma[J]. Ann Oncol, 2017,28(9):2169-2178. DOI: 10.1093/annonc/mdx289. doi:10.1093/annonc/mdx289pmid:28633365 |
[21] | Dreyling M, Santoro A, Mollica L, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma[J]. J Clin Oncol, 2017,35(35):3898-3905. DOI: 10.1200/jco.2017.75.4648. doi:10.1200/JCO.2017.75.4648pmid:28976790 |
[22] | Markham A. Copanlisib: first global approval[J]. Drugs, 2017,77(18):2057-2062. DOI: 10.1007/s40265-017-0838-6. doi:10.1007/s40265-017-0838-6pmid:29127587 |
[23] | Dong S, Guinn D, Dubovsky JA, et al. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells[J]. Blood, 2014,124(24):3583-3586. DOI: 10.1182/blood-2014-07-587279. doi:10.1182/blood-2014-07-587279 |
[24] | Flinn IW, Miller CB, Ardeshna KM, et al. DYNAMO: a phase Ⅱ study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma[J]. J Clin Oncol, 2019,37(11):912-922. DOI: 10.1200/jco.18.00915. doi:10.1200/JCO.18.00915pmid:30742566 |
[25] | Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL[J]. Blood, 2018,132(23):2446-2455. DOI: 10.1182/blood-2018-05-850461. doi:10.1182/blood-2018-05-850461pmid:30287523 |
[26] | Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-δ, γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma[J]. Blood, 2018,131(8):888-898. DOI: 10.1182/blood-2017-08-802470. doi:10.1182/blood-2017-08-802470pmid:29233821 |
[27] | Wang HQ, Jiang WQ, Li S, et al. Safety and efficacy of TQ-B3525, a novel and selective oral PI3Kα/δ inhibitor, in Chinese patients with advanced malignancies: a phase Ⅰ dose-escalation and expansion trial [C/OL]//AACR Annual Meeting 2020: Session VCTPL04-Immunotherapy clinical trials 2. America, 2020[2020-06-15]. https://asco.confex.com/asco/2020/sci/papers/viewonly.cgi?password=862463&username=309305. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 张洁, 范玲, 李杰, 温华, 苏媛媛, 路宁, 张明鑫.原发性胰腺淋巴瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 316-320. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[6] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[7] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[8] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[9] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[10] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[11] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[12] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[13] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[14] | 邓莉莉, 段星宇, 李保中.HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[15] | 刘绍平, 罗汉传, 林书瀚, 罗家辉.中晚期肝细胞癌介入及系统治疗的现状与研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 758-762. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||