国际肿瘤学杂志››2015,Vol. 42››Issue (6): 458-461.doi:10.3760/cma.j.issn.1673-422X.2015.06.016
郑悦,魏素菊
收稿日期:
2014-11-05出版日期:
2015-06-08发布日期:
2015-05-31通讯作者:
魏素菊,Email: weisuju@126.com E-mail:weisuju@126.comZheng Yue, Wei Suju
Received:
2014-11-05Online:
2015-06-08Published:
2015-05-31Contact:
Wei Suju E-mail:weisuju@126.com摘要:随着分子生物学的发展,晚期非小细胞肺癌的治疗由传统的化疗转向以基因分型为指导的分子靶向治疗。其中应用较多的是表皮生长因子受体酪氨酸激酶抑制剂(EGFRTKI)类药物。然而EGFR-TKI的耐药问题近年来受到越来越多的关注,其机制主要有EGFR基因二次突变,c-MET、人类表皮生长因子受体2(Her2)等靶基因的扩增,组织表型的改变,旁路途径的激活,p53基因的缺失,细胞信号通路负反馈的减弱以及多重机制叠加等。
郑悦,魏素菊. 晚期非小细胞肺癌EGFR-TKI获得性耐药机制[J]. 国际肿瘤学杂志, 2015, 42(6): 458-461.
Zheng Yue, Wei Suju. Acquired resistance mechanisms of EGFR-TKI in advanced non-small cell lung cancer[J]. Journal of International Oncology, 2015, 42(6): 458-461.
[1] Chen W, Zheng R, Zhang S, et al. Annual report on status of cancer in China, 2010[J]. Chin J Cancer Res, 2014, 26(1): 48-58. [2] Oxnard GR, Arcila ME, Sima CS, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFRmutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation[J]. Clin Cancer Res, 2011, 17(6): 1616-1622. [3] Nelson V, Ziehr J, Agulnik M, et al. Afatinib: emerging nextgeneration tyrosine kinase inhibitor for NSCLC[J]. Onco Targets Therapy, 2013, 6: 135-143. [4] Janne PA, Ramalingam SS, ChihHsin YJ, et al. Clinical activity of the mutantselective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitorresistant nonsmall cell lung cancer (NSCLC)[J]. J Clin Oncol, 2014, 32 Suppl 15: 8009. [5] Sequist LV, JeanCharles S, Gadgeel SM, et al. Firstinhuman evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M)[J]. J Clin Oncol, 2014, 32 Suppl 15: 8010. [6] DongWan K, Lee DH, Kang JH, et al. Clinical activity and safety of HM61713, an EGFRmutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs)[J]. J Clin Oncol, 2014, 32 Suppl 15: 8011. [7] Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC[J]. Cancer Cell, 2010, 17(1): 77-88. [8] Thomson S, Petti F, SujkaKwok I, et al. Kinase switching in mesenchymallike nonsmall cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy[J]. Clin Exp Metastasis, 2008, 25(8): 843-854. [9] Doebele RC, Pilling AB, Aisner DL, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged nonsmall cell lung cancer[J]. Clin Cancer Res, 2012, 18(5): 1472-1482. [10] Katayama R, Khan TM, Benes C, et al. Therapeutic strategies to overcome crizotinib resistance in nonsmall cell lung cancers harboring the fusion oncogene EML4ALK[J]. Proc Natl Acad Sci USA, 2011, 108(18): 7535-7540. [11] Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALKrearranged lung cancers[J]. Sci Transl Med, 2012, 4(120): 120ra17. [12] Takezawa K, Pirazzoli V, Arcila ME, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFRmutant lung cancers that lack the secondsite EGFRT790M mutation[J]. Cancer Discov, 2012, 2(10): 922-933. [13] Sequist LV, Waltman BA, DiasSantagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J]. Sci Transl Med, 2011, 3(75): 75ra26. [14] Byers LA, Diao L, Wang J, et al. An epithelialmesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance[J]. Clin Cancer Res, 2013, 19(1): 279-290. [15] VazquezMartin A, Cufi S, OliverasFerraros C, et al. IGF1R/epithelialtomesenchymal transition (EMT) crosstalk suppresses the erlotinibsensitizing effect of EGFR exon 19 deletion mutations[J]. Sci Rep, 2013, 3: 2560. [16] Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFRTKI therapy in 155 patients with EGFRmutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247. [17] Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827): 1039-1043. [18] Niederst MJ, Engelman JA. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer[J]. Sci Signal, 2013, 6(294): re6. [19] Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer[J]. J Clin Oncol, 2013, 31(31): 3987-3996. [20] Chong CR, Janne PA. The quest to overcome resistance to EGFRtargeted therapies in cancer[J]. Nat Med, 2013, 19(11): 1389-1400. [21] Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGFbinding proteins[J]. J Clin Invest, 2008, 118(7): 2609-2619. [22] Cortot AB, Repellin CE, Shimamura T, et al. Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway[J]. Cancer Res, 2013, 73(2): 834-843. [23] Terai H, Soejima K, Yasuda H, et al. Activation of the FGF2FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC[J]. Mol Cancer Res, 2013, 11(7): 759-767. [24] Huang S, Benavente S, Armstrong EA, et al. p53 modulates acquired resistance to EGFR inhibitors and radiation[J]. Cancer Res, 2011, 71(22): 7071-7079. [25] Sauer L, Gitenay D, Vo C, et al. Mutant p53 initiates a feedback loop that involves Egr1/EGF receptor/ERK in prostate cancer cells[J]. Oncogene, 2010, 29(18): 2628-2637. [26] Zwang Y, SasChen A, Drier Y, et al. Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals[J]. Mol Cell, 2011, 42(4): 524-535. [27] Ohashi K, Sequist LV, Arcila ME, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1[J]. Proc Natl Acad Sci USA, 2012, 109(31): E2127-2133. [28] de Bruin EC, Cowell C, Warne PH, et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer[J]. Cancer Discov, 2014, 4(5): 606-619. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[5] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[6] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[7] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[8] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[9] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[10] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[11] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[12] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[13] | 邓莉莉, 段星宇, 李保中.HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[14] | 刘绍平, 罗汉传, 林书瀚, 罗家辉.中晚期肝细胞癌介入及系统治疗的现状与研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 758-762. |
[15] | 江山, 徐细明.肝细胞癌的靶向及免疫治疗新进展[J]. 国际肿瘤学杂志, 2023, 50(11): 688-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||