国际肿瘤学杂志››2016,Vol. 43››Issue (11): 871-873.doi:10.3760/cma.j.issn.1673-422X.2016.11.019
唐建琴,侯晓阳,蒋冠,魏志平,刘彦群
收稿日期:
2016-03-23出版日期:
2016-11-08发布日期:
2016-11-02通讯作者:
Liu Yanqun E-mail:dr.guanjiang@gmail.com基金资助:
国家自然科学基金(81372916、81572976);江苏省自然科学基金(BK20141142)
Tang Jianqin, Hou Xiaoyang, Jiang Guan, Wei Zhiping, Liu Yanqun
Received:
2016-03-23Online:
2016-11-08Published:
2016-11-02Contact:
Liu Yanqun E-mail:dr.guanjiang@gmail.comSupported by:
National Natural Science Fundation of China (81372916, 81572976); Natural Science Foundation Jiangsu Province of China (BK20141142)
摘要:目前转移性恶性黑色素瘤的治疗方法包括化疗、靶向治疗、免疫治疗及放疗等,但是治疗结果远不乐观,迫切需要提高早期诊断率,需要更有效的治疗药物以及更好的药物传递系统。纳米技术在黑色素瘤的诊断与治疗中的应用减轻了药物的耐药,提高了疗效并减少了不良反应。
唐建琴,侯晓阳,蒋冠,魏志平,刘彦群. 纳米技术在黑色素瘤诊断及治疗中的应用[J]. 国际肿瘤学杂志, 2016, 43(11): 871-873.
Tang Jianqin, Hou Xiaoyang, Jiang Guan, Wei Zhiping, Liu Yanqun. Application of nanotechnology in the diagnosis and therapy of melanoma[J]. Journal of International Oncology, 2016, 43(11): 871-873.
[1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29. DOI: 10.3322/caac. [2] Chung C, Reilly S. Trametinib: a novel signal transduction inhibitor for the treatment of metastatic cutaneous melanoma[J]. Am J Health Syst Pharm, 2015, 72(2): 101-110. DOI: 10.2146/ajhp140045. [3] Luke JJ, Hodi FS. Ipilimumab, vemurafenib, dabrafenib, and trametinib: synergistic competitors in the clinical management of BRAF mutant malignant melanoma[J]. Oncologist, 2013, 18(6): 717-725. DOI: 10.1634/theoncologist. [4] Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system[J]. Nanomedicine (Lond), 2012, 7(8): 1253-1271. DOI: 10.2217/nnm. [5] Kumari P, Ghosh B, Biswas S. Nanocarriers for cancertargeted drug delivery[J]. J Drug Target, 2016 , 24(3): 179-191. DOI: 10.3109/1061186X. [6] AhlgrimmSiess V, Laimer M, Arzberger E, et al. New diagnostics for melanoma detection: from artificial intelligence to RNA microarrays[J]. Future Oncol, 2012, 8(7): 819-827. DOI: 10.2217/fon. [7] Flaherty KT. Targeting metastatic melanoma[J]. An Rev Med, 2012, 63: 171-183. DOI: 10.1146/annurev-med-050410-105655. [8] Ong FS, Das K, Wang J, et al. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing[J]. Expert Rev Mol Diagn, 2012, 12(6): 593-602. DOI: 10.1586/erm.12.59. [9] Huber F, Lang HP, Backmann N, et al. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays[J]. Nat Nanotechnol, 2013, 8(2): 125-129. DOI: 10.1038/nnano.2012.263. [10] Kim MJ, Lee JY, Nehrbass U, et al. Detection of melanoma using antibodyconjugated quantum dots in a coculture model for highthroughput screening system[J]. Analyst, 2012, 137(6): 1440-1445. DOI: 10.1039/c2an16013g. [11] Li Z, Huang P, Lin J, et al. Arginineglycineaspartic acidconjugated dendrimermodified quantum dots for targeting and imaging melanoma[J]. J Nanosci Nanotechnol, 2010, 10(8): 48594867. DOI: 10.1166/jnn.2010.2217. [12] Vannucci L, Falvo E, Failla CM, et al. In vivo targeting of cutaneous melanoma using an melanoma stimulating hormoneengineered human protein cage with fluorophore and magnetic resonance imaging tracers[J]. J Biomed Nanotechnol, 2015, 11(1): 8192. DOI: 10.1186/1479587612S1P6. [13] Bei D, Meng J, Youan BB. Engineering nanomedicines for improved melanoma therapy: progress and promises[J]. Nanomedicine (Lond), 2010, 5(9): 1385-1399. DOI: 10.2217/nnm. [14] Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs[J]. Annu Rev Med, 2012, 63: 185198. DOI: 10.1146/annurevmed040210162544. [15] Christian DA, Cai S, Bowen DM, et al. Polymersome carriers: from selfassembly to siRNA and protein therapeutics[J]. Eur J Pharm Biopharm, 2009, 71(3): 463-474. DOI: 10.1016/j.ejpb.2008.09.025. [16] Bonifácio BV, Silva PB, Ramos MA, et al. Nanotechnologybased drug delivery systems and herbal medicines: a review[J]. Int J Nanomedicine, 2014, 9: 1-15. DOI: 10.2147/IJN.S52634. [17] Pegoraro C, Cecchin D, Gracia LS, et al. Enhanced drug delivery to melanoma cells using PMPCPDPA polymersomes[J]. Cancer Lett, 2013, 334(2): 328337. DOI: 10.1016/j.canlet.2013.02.007. [18] Anilkumar P, Lu F, Cao L, et al. Fullerenes for applications in biology and medicine[J]. Curr Med Chem, 2011, 18(14): 2045-2059. DOI: 10.2174/092986711795656225. [19] Chaudhuri P, Soni S, Sengupta S. Singlewalled carbon nanotubeconjugated chemotherapy exhibits increased therapeutic index in melanoma[J]. Nanotechnology, 2010, 21(2): 025102. DOI: 10.1088/09574484/21/2/025102. [20] Wang Y, Mo L, Wei W, et al. Efficacy and safety of dendrimer nanoparticles with coexpression of tumor necrosis factoralpha and herpes simplex virus thymidine kinase in gene radiotherapy of the human uveal melanoma OCM1 cell line[J]. Int J Nanomedicine, 2013, 8: 38053816. DOI: 10.2147/IJN.S48950. [21] Siu KS, Chen D, Zheng X, et al. Noncovalently functionalized singlewalled carbon nanotube for topical siRNA delivery into melanoma[J]. Biomaterials, 2014, 35(10): 3435-3442. DOI: 10.1016/j.biomaterials.2013.12.079. [22] Scodeller P, Catalano PN, Salguero N, et al. Hyaluronan degrading silica nanoparticles for skin cancer therapy[J]. Nanoscale, 2013, 5(20): 9690-9698. DOI: 10.1016/j.biomaterials.2013.12.079. [23] Choi BB, Kim MS, Kim UK, et al. Targeting NEU protein in melanoma cells with nonthermal atmospheric pressure plasma and gold nanoparticles[J]. J Biomed Nanotechnol, 2015, 11(5): 900-905. DOI: 10.1166/jbn.2015.1999. [24] Yao H, Ng SS, Huo LF, et al. Effective melanoma immunotherapy with interleukin2 delivered by a novel polymeric nanoparticle[J]. Mol Cancer Ther, 2011, 10(6): 1082-1092. DOI: 10.1158/1535-7163.MCT-10-0717. [25] Tan S, Sasada T, Bershteyn A, et al. Combinational delivery of lipidenveloped polymeric nanoparticles carrying different peptides for antitumor immunotherapy[J]. Nanomedicine (Lond), 2014, 9(5): 635-647. DOI: 10.2217/NNM.13.67 [26] Camerin M, Magaraggia M, Soncin M, et al. The in vivo efficacy of phthalocyanine nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma[J]. Eur J Cancer, 2010, 46(10): 19101918. DOI: 10.1016/j.ejca.2010.02.037. [27] Idris NM, Gnanasammandhan MK, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remotecontrolled nanotransducers[J]. Nat Med, 2012, 18(10): 1580-1585. DOI: 10.1038/nm.2933. [28] LeonFerre RA, Markovic SN. Nabpaclitaxel in patients with metastatic melanoma[J]. Expert Rev Anticancer Ther, 2015, 15(12): 1371-1377. DOI: 10.1586/14737140.2015.1110024. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[3] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[4] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[5] | 陈琦, 徐晨阳, 王寅, 雷大鹏.高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
[6] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[7] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[8] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[9] | 张丽丽, 谭茹, 房雪利, 杨宇, 桑铮, 李宝生.乳腺导管原位癌影像学诊断、病理学升级及影像学技术进展[J]. 国际肿瘤学杂志, 2024, 51(3): 166-169. |
[10] | 彭琴, 蔡玉婷, 王伟.KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[11] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[12] | 金旭东, 陈忠坚, 毛伟敏.MTAP基因在恶性间皮瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 99-104. |
[13] | 黄镇, 陈永顺.循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. |
[14] | 王景, 许文婷.中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[15] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||