国际肿瘤学杂志››2018,Vol. 45››Issue (3): 172-175.doi:10.3760/cma.j.issn.1673-422X.2018.03.010
凌晓斐,胥可,邵华,王翠娟
收稿日期:
2017-12-22出版日期:
2018-03-08发布日期:
2018-05-16通讯作者:
邵华,Email: chinashaohua5888@163.com;王翠娟,Email: iamcuijuan@163.com E-mail:邵华,Email: chinashaohua5888@163.com;王翠娟,Email: iamcuijuan@163.comLing Xiaofei, Xu Ke, Shao Hua, Wang Cuijuan
Received:
2017-12-22Online:
2018-03-08Published:
2018-05-16Contact:
邵华,Email: chinashaohua5888@163.com;王翠娟,Email: iamcuijuan@163.com E-mail:邵华,Email: chinashaohua5888@163.com;王翠娟,Email: iamcuijuan@163.com摘要:姜黄素是从姜黄属植物姜黄根茎中提取的酚性色素,具有抗氧化、抗炎、抗肿瘤等多方面药理作用。研究表明,联苯二氟铜(EF24)是一种新型姜黄素类似物,EF24可以诱导肿瘤细胞凋亡、阻滞细胞周期、抑制细胞侵袭与转移,与其他药物联合使用时具有增敏效果,在不增加细胞毒性的情况下,在多种肿瘤细胞株中表现出比姜黄素更高的抗肿瘤活性与生物利用度,有望作为一种具有潜力的抗癌新药。
凌晓斐,胥可,邵华,王翠娟. 姜黄素类似物EF24的抗肿瘤机制与应用 [J]. 国际肿瘤学杂志, 2018, 45(3): 172-175.
Ling Xiaofei, Xu Ke, Shao Hua, Wang Cuijuan. Anticancer mechanism and application of curcumin analog EF24[J]. Journal of International Oncology, 2018, 45(3): 172-175.
[1] Wu JZ, Wu SB, Shi LY, et al. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anticancer agents for lung cancer[J]. Eur J Med Chem, 2017, 125: 1321-1331. DOI: 10.1016/j.ejmech.2016.10.027. [2] 韩金荣, 张林西. 姜黄素抗肿瘤作用机制[J]. 国际肿瘤学杂志, 2013, 40(11): 823-826. DOI: 10.3760/cma.j.issn.1673-422X.2013.11.007. [3] Bisht S, Schlesinger M, Rupp A, et al. A liposomal formulation of the synthetic curcumin analog EF24 (LipoEF24) inhibits pancreatic cancer progression: towards future combination therapies[J]. J Nanobiotechnology, 2016, 14(1): 57. DOI: 10.1186/s12951-016-0209-6. [4] He G, Feng C, Vinothkumar R, et al. Curcumin analog EF24 induces apoptosis via ROSdependent mitochondrial dysfunction in human colorectal cancer cells[J]. Cancer Chemother Pharmacol, 2016, 78(6): 1151-1161. DOI: 10.1007/s00280-016-3172-x. [5] Yang CH, Yue J, Sims M, et al. The curcumin analog EF24 targets NFκB and miRNA-21, and has potent anticancer activity in vitro and in vivo[J]. PLoS One, 2013, 8(8): e71130. DOI: 10.1371/journal.pone.0071130. [6] Kasinski AL, Du Y, Thomas SL, et al. Inhibition of IkappaB kinasenuclear factorkappaB signaling pathway by 3,5bis(2flurobenzylidene)piperidin4one (EF24), a novel monoketone analog of curcumin[J]. Mol Pharmacol, 2008, 74(3): 654661. DOI: 10.1124/mol.108.046201. [7] Yin DL, Liang YJ, Zheng TS, et al. EF24 inhibits tumor growth and metastasis via suppressing NFkappaB dependent pathways in human cholangiocarcinoma[J]. Sci Rep, 2016, 6: 32167. DOI: 10.1038/srep32167. [8] Raj L, Ide T, Gurkar AU, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS[J]. Nature, 2011, 475(7355): 231-234. DOI: 10.1038/nature10167. [9] Peng Z, Xia Y, Chen W, et al. EF24 induces ROSmediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells[J]. Oncotarget, 2016, 7(14): 18050-18064. [10] Thomas SL, Zhong D, Zhou W, et al. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF1[J]. Cell Cycle, 2008, 7(15): 2409-2417. DOI: 10.4161/cc.6410. [11] Fragkos M, Ganier O, Coulombe P, et al. DNA replication origin activation in space and time[J]. Nat Rev Mol Cell Biol, 2015, 16(6): 360-374. DOI: 10.1038/nrm4002. [12] Liu HT, Liang YJ, Wang LL, et al. In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog[J]. PLoS One, 2012, 7(10): e48075. DOI: 10.1371/journal.pone.0048075. [13] Meek DW. Regulation of the p53 response and its relationship to cancer[J]. Biochem J, 2015, 469(3): 325-346. DOI: 10.1042/BJ20150517. [14] Subramaniam D, May R, Sureban SM, et al. Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity[J]. Cancer Res, 2008, 68(6): 1962-1969. DOI: 10.1158/00085472.CAN-07-6011. [15] Dvorak HF. Tumors: wounds that do not healredux[J]. Cancer Immunol Res, 2015, 3(1): 1-11. DOI: 10.1158/23266066.CIR-14-0209. [16] 李纯苓, 王朝霞, 王恒孝. HIF1α、PDGF与VEGF、VEGFR在乳腺癌发病中的表达及意义[J]. 国际肿瘤学杂志, 2014, 41(11): 858-865. DOI: 10.3760/cma.j.issn.1673-422X.2014.11.018. [17] Liu W, Kovacevic Z, Peng Z, et al. The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets[J]. Oncotarget, 2015, 6(34): 35522-35541. DOI: 10.18632/oncotarget.5849. [18] Zhao R, Tin L, Zhang Y, et al. EF24 suppresses invasion and migration of hepatocellular carcinoma cells in vitro via inhibiting the phosphorylation of Src[J]. Biomed Res Int, 2016, 2016: 8569684. DOI: 10.1155/2016/8569684. [19] 曹纯, 马晓洁, 谭榜宪. 缺氧诱导因子-1α与上皮间质转化[J]. 国际肿瘤学杂志, 2014, 41(6): 415-418. DOI: 10.3760/cma.j.issn.1673-422X.2014.06.005. [20] Zhang P, Bai H, Liu G, et al. MicroRNA33b, upregulated by EF24, a curcumin analog, suppresses the epithelialtomesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2[J]. Toxicol Lett, 2015, 234(3): 151161. DOI: 10.1016/j.toxlet.2015.02.018. [21] Zhang D, Wang Y, Dong L, et al. Therapeutic role of EF24 targeting glucose transporter 1mediated metabolism and metastasis in ovarian cancer cells[J]. Cancer Sci, 2013, 104(12): 1690-1696. DOI: 10.1111/cas.12293. [22] Liang Y, Yin D, Hou L, et al. Diphenyl difluoroketone: a potent chemotherapy candidate for human hepatocellular carcinoma[J]. PLoS One, 2011, 6(8): e23908. DOI: 10.1371/journal.pone.0023908. [23] Chen W, Zou P, Zhao Z, et al. Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer[J]. Redox Biol, 2016, 10: 78-89. DOI: 10.1016/j.redox.2016.09.006. [24] Onen HI, Yilmaz A, Alp E, et al. EF24 and RAD001 potentiates the anticancer effect of platinumbased agents in human malignant pleural mesothelioma (MSTO211H) cells and protects nonmalignant mesothelial (MET5A) cells[J]. Hum Exp Toxicol, 2015, 34(2): 117-126. DOI: 10.1177/0960327114542965. [25] Liang Y, Zheng T, Song R, et al. Hypoxiamediated sorafenib resistance can be overcome by EF24 through Von HippelLindau tumor suppressordependent HIF-1α inhibition in hepatocellular carcinoma[J]. Hepatology, 2013, 57(5): 1847-1857. DOI: 10.1002/hep.26224. [26] Aravindan S, Natarajan M, Awasthi V, et al. Novel synthetic monoketone transmute radiationtriggered NFκBdependent TNFα crosssignaling feedback maintained NFκB and favors neuroblastoma regression[J]. PLoS One, 2013, 8(8): e72464. DOI: 10.1371/journal.pone.0072464. |
[1] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[2] | 王丽薇, 梁洪生, 杜松林, 陈志豪, 王晴, 高爱丽.阿维菌素类药物在抗肿瘤方面的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 353-356. |
[3] | 王爽, 汤云云, 岳琦.非精神活性大麻二酚抗肿瘤研究新进展[J]. 国际肿瘤学杂志, 2020, 47(10): 619-623. |
[4] | 衣琳, 邱实.紫草素抗胶质瘤效应及其作用机制[J]. 国际肿瘤学杂志, 2019, 46(8): 489-491. |
[5] | 梁敬1,3,韩莎2,姚静3,孔庆胜2.组蛋白脱乙酰基酶及其抑制剂对肿瘤的作用[J]. 国际肿瘤学杂志, 2019, 46(4): 235-238. |
[6] | 熊波波, 张劲松, 李宁, 王海峰, 左毅刚, 王剑松.晚期肾癌的分子靶向治疗[J]. 国际肿瘤学杂志, 2019, 46(12): 705-710. |
[7] | 王刚,王黄震,薛挺.奥沙利铂诱导的细胞自噬对胃癌SGC7901细胞耐药的影响[J]. 国际肿瘤学杂志, 2018, 45(8): 513-518. |
[8] | 陈刚,庄昉成.高迁移率族蛋白B1及其在宫颈癌中的作用[J]. 国际肿瘤学杂志, 2017, 44(3): 235-238. |
[9] | 刘兰,张志敏,彭文苗,付红星,饶智国.姜黄素逆转P-糖蛋白介导的多药耐药机制[J]. 国际肿瘤学杂志, 2017, 44(10): 758-761. |
[10] | 董熠, 魏月华, 胡伟国, 宋启斌.非小细胞肺癌孤立性骨转移的治疗[J]. 国际肿瘤学杂志, 2017, 44(1): 60-62. |
[11] | 蔡晓君,韩丽娟,韦平.姜黄素抑制MGMT基因表达增强恶性胶质瘤对替莫唑胺化疗的敏感性[J]. 国际肿瘤学杂志, 2016, 43(8): 565-569. |
[12] | 杜冀晖, 张厚德, 魏静, 王磊, 孙廷基.过氧化物酶体通路氧化应激基因与青蒿琥酯胰腺癌敏感性的相关性研究[J]. 国际肿瘤学杂志, 2016, 43(7): 503-507. |
[13] | 田若楠,孙剑经,张林西.姜黄素抗食管癌的机制[J]. 国际肿瘤学杂志, 2016, 43(5): 379-381. |
[14] | 刘冬菊, 赵秋生, 姚宇.姜黄素联合顺铂对宫颈癌裸鼠移植瘤生长及淋巴转移的影响[J]. 国际肿瘤学杂志, 2016, 43(4): 241-245. |
[15] | 田川, 李琦.FOXM1致癌机制及其分子靶向药物[J]. 国际肿瘤学杂志, 2016, 43(4): 274-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||