国际肿瘤学杂志››2023,Vol. 50››Issue (8): 503-507.doi:10.3760/cma.j.cn371439-20230605-00096
收稿日期:
2023-06-05修回日期:
2023-07-18出版日期:
2023-08-08发布日期:
2023-10-24通讯作者:
李文倩 E-mail:lwq121616@163.com基金资助:
Wang Ting1, Li Wenqian2(), Xie Youbang2
Received:
2023-06-05Revised:
2023-07-18Online:
2023-08-08Published:
2023-10-24Contact:
Li Wenqian E-mail:lwq121616@163.comSupported by:
摘要:
低氧是血液系统恶性肿瘤微环境的显著特征之一,低氧微环境可以促进肿瘤细胞转移和浸润,是导致治疗耐受的关键因素之一,也是对抗肿瘤免疫反应产生抵抗的重要因素。在急性髓系白血病(AML)中,细胞的氧感受通路是一种重要的信号转导途径,它参与了细胞对低氧环境的应答,并能够调节细胞的代谢、生长和存活等生物学过程。从低氧对白血病细胞氧感受通路的影响因素入手,以低氧诱导的细胞适应机制为靶点,探寻低氧环境下靶向治疗血液系统恶性肿瘤的新方向,可为治疗AML提供新思路及理论支持。
王婷, 李文倩, 解友邦. 低氧与急性髓系白血病细胞氧感受通路的相关性[J]. 国际肿瘤学杂志, 2023, 50(8): 503-507.
Wang Ting, Li Wenqian, Xie Youbang. Correlation between hypoxia and the oxygen sensing pathway in acute myeloid leukemia cells[J]. Journal of International Oncology, 2023, 50(8): 503-507.
[1] | Yi M, Li A, Zhou L, et al. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017[J].J Hematol Oncol,2020,13(1): 72. DOI:10.1186/s13045-020-00908-z. |
[2] | Kim HS, Ha HS, Kim DH, et al. O2variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow[J].Sci Adv,2023,9(12): eadd4210. DOI:10.1126/sciadv.add4210. |
[3] | Kessler T, Koschmieder S, Schliemann C, et al. Phase Ⅱ clinical trial of pazopanib in patients with acute myeloid leukemia (AML), relapsed or refractory or at initial diagnosis without an intensive treatment option (PazoAML)[J].Ann Hematol,2019,98(6): 1393-1401. DOI:10.1007/s00277-019-03651-9. |
[4] | Christodoulou C, Spencer JA, Yeh SA, et al. Live-animal imaging of native haematopoietic stem and progenitor cells[J].Nature,2020,578(7794): 278-283. DOI:10.1038/s41586-020-1971-z. |
[5] | Yao Y, Li F, Huang J, et al. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development[J].Exp Hematol Oncol,2021,10(1): 39. DOI:10.1186/s40164-021-00233-2. pmid:34246314 |
[6] | Drolle H, Wagner M, Vasold J, et al. Hypoxia regulates proliferation of acute myeloid leukemia and sensitivity against chemotherapy[J].Leuk Res,2015,39(7): 779-785. DOI:10.1016/j.leukres.2015.04.019. |
[7] | Li Y, Zhao L, Li XF. The hypoxia-activated prodrug TH-302: exploiting hypoxia in cancer therapy[J].Front Pharmacol,2021,12: 636892. DOI:10.3389/fphar.2021.636892. |
[8] | 李凡, 何海萍, 张丽华, 等. 骨髓增生异常综合征患者来源间充质干细胞的最新研究进展[J].中国实验血液学杂志,2022,30(4): 1286-1290. DOI:10.19746/j.cnki.issn1009-2137.2022.04.051. |
[9] | Deynoux M, Sunter N, Hérault O, et al. Hypoxia and hypoxia-inducible factors in leukemias[J].Front Oncol,2016,6: 41. DOI:10.3389/fonc.2016.00041. pmid:26955619 |
[10] | 陈曦, 母丹, 严钦, 等. 骨髓微环境与白血病细胞分化[J].国际肿瘤学杂志,2021,48(3): 189-192. DOI:10.3760/cma.j.cn371439-20200619-00038. |
[11] | Ruan Y, Kim HN, Ogana H, et al. Wnt signaling in leukemia and its bone marrow microenvironment[J].Int J Mol Sci,2020,21(17): 6247. DOI:10.3390/ijms21176247. |
[12] | Gruszka AM, Valli D, Alcalay M. Wnt signalling in acute myeloid leukaemia[J].Cells,2019,8(11): 1403. DOI:10.3390/cells8111403. |
[13] | Bruno S, Mancini M, De Santis S, et al. The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities[J].Int J Mol Sci,2021,22(13): 6857. DOI:10.3390/ijms22136857. |
[14] | Jiang M, He G, Wang J, et al. Hypoxia induces inflammatory microenvironment by priming specific macrophage polarization and modifies LSC behaviour via VEGF-HIF1α signalling[J].Transl Pediatr,2021,10(7): 1792-1804. DOI:10.21037/tp-21-86. pmid:34430427 |
[15] | Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J].Cell Metab,2006,3(3): 177-185. DOI:10.1016/j.cmet.2006.02.002. |
[16] | Morganti C, Cabezas-Wallscheid N, Ito K. Metabolic regulation of hematopoietic stem cells[J].Hemasphere,2022,6(7): e740. DOI:10.1097/HS9.0000000000000740. pmid:35785147 |
[17] | He P, Lei J, Zou LX, et al. Effects of hypoxia on DNA hydroxymethylase Tet methylcytosine dioxygenase 2 in a KG-1 human acute myeloid leukemia cell line and its mechanism[J].Oncol Lett,2021,22(4): 692. DOI:10.3892/ol.2021.12953. pmid:34457047 |
[18] | Abdul-Aziz AM, Shafat MS, Sun Y, et al. HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia[J].Oncogene,2018,37(20): 2676-2686. DOI:10.1038/s41388-018-0151-1. pmid:29487418 |
[19] | Abdul-Aziz AM, Shafat MS, Mehta TK, et al. MIF-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia[J].Cancer Res,2017,77(2): 303-311. DOI:10.1158/0008-5472.CAN-16-1095. pmid:27872094 |
[20] | Jabari M, Allahbakhshian Farsani M, Salari S, et al. Hypoxia-inducible factor1-Α (HIF1α) and vascular endothelial growth factor-A (VEGF-A) expression in De Novo AML patients[J].Asian Pac J Cancer Prev,2019,20(3): 705-710. DOI:10.31557/APJCP.2019.20.3.705. |
[21] | Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology[J].Cell Metab,2018,27(2): 281-298. DOI:10.1016/j.cmet.2017.10.005. pmid:29129785 |
[22] | Magliulo D, Bernardi R. HIF-α factors as potential therapeutic targets in leukemia[J].Expert Opin Ther Targets,2018,22(11): 917-928. DOI:10.1080/14728222.2018.1538357. |
[23] | Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies[J].Leukemia,2021,35(2): 299-311. DOI:10.1038/s41375-020-01069-1. pmid:33122849 |
[24] | Du W, Lu C, Zhu X, et al. Prognostic significance of CXCR4 expression in acute myeloid leukemia[J].Cancer Med,2019,8(15): 6595-6603. DOI:10.1002/cam4.2535. |
[25] | Ladikou EE, Chevassut T, Pepper CJ, et al. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia[J].Br J Haematol,2020,189(5): 815-825. DOI:10.1111/bjh.16456. |
[26] | Vitale C, Griggio V, Riganti C, et al. Targeting HIF-1α regulatory pathways as a strategy to hamper tumor-microenvironment interactions in CLL[J].Cancers (Basel),2021,13(12): 2883. DOI:10.3390/cancers13122883. |
[27] | Cheng Y, Ma XL, Wei YQ, et al. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases[J].Biochim Biophys Acta Rev Cancer,2019,1871(2): 289-312. DOI:10.1016/j.bbcan.2019.01.005. |
[28] | Cheng H, Huang C, Xu X, et al. PIM-1 mRNA expression is a potential prognostic biomarker in acute myeloid leukemia[J].J Transl Med,2017,15(1): 179. DOI:10.1186/s12967-017-1287-4. pmid:28851457 |
[29] | Li L, Zhao L, Man J, et al. CXCL2 benefits acute myeloid leukemia cells in hypoxia[J].Int J Lab Hematol,2021,43(5): 1085-1092. DOI:10.1111/ijlh.13512. pmid:33793061 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[5] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[6] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[7] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[8] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[9] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[10] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[11] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[12] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[13] | 邓莉莉, 段星宇, 李保中.HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[14] | 刘绍平, 罗汉传, 林书瀚, 罗家辉.中晚期肝细胞癌介入及系统治疗的现状与研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 758-762. |
[15] | 江山, 徐细明.肝细胞癌的靶向及免疫治疗新进展[J]. 国际肿瘤学杂志, 2023, 50(11): 688-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||