国际肿瘤学杂志››2024,Vol. 51››Issue (5): 308-311.doi:10.3760/cma.j.cn371439-20240304-00052
王培鑫1, 赵军2, 徐世红2(), 姜朝阳2, 王小强2, 杨红娟1
收稿日期:
2024-03-04修回日期:
2024-04-03出版日期:
2024-05-08发布日期:
2024-06-26通讯作者:
徐世红,Email:308359102@qq.com基金资助:
Wang Peixin1, Zhao Jun2, Xu Shihong2(), Jiang Zhaoyang2, Wang Xiaoqiang2, Yang Hongjuan1
Received:
2024-03-04Revised:
2024-04-03Online:
2024-05-08Published:
2024-06-26Contact:
Xu Shihong, Email:308359102@qq.comSupported by:
摘要:
骨肉瘤是一种常见的原发性恶性骨肿瘤,具有高度侵袭性和远端转移性,预后较差。铁是一种人体必需的营养素,具有电子交换能力,是细胞活动的重要参与者,其代谢异常与骨肉瘤的进展密切相关。有研究证明铁死亡可以调节骨肉瘤进展,在骨肉瘤的治疗中发挥重要作用。探讨铁死亡的相关分子机制在骨肉瘤中的应用及药物干预现状,可为骨肉瘤的治疗提供新的策略。
王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311.
Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma[J]. Journal of International Oncology, 2024, 51(5): 308-311.
[1] | Hong-Bin S, Wan-Jun Y, Chen-Hui D, et al. Identification of an iron metabolism-related lncRNA signature for predicting osteosarcoma survival and immune landscape[J].Front Genet,2022,13: 816460. DOI:10.3389/fgene.2022.816460. |
[2] | Du SH, Li JX, Du CH, et al. Overendocytosis of superparamagnetic Iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field[J].Oncotarget,2017,8(6): 9410-9424. DOI:10.18632/oncotarget.14114. pmid:28031531 |
[3] | Raghubir M, Rahman CN, Fang J, et al. Osteosarcoma growth suppression by riluzole delivery via iron oxide nanocage in nude mice[J].Oncol Rep,2020,43(1): 169-176. DOI:10.3892/or.2019.7420. pmid:31789402 |
[4] | Zhou L, Zhang L, Wang S, et al. Labile iron affects pharmacological ascorbate-induced toxicity in osteosarcoma cell lines[J].Free Radic Res,2020,54(6): 385-396. DOI:10.1080/10715762.2020.1744577. |
[5] | Argenziano M, Di Paola A, Tortora C, et al. Effects of iron chelation in osteosarcoma[J].Curr Cancer Drug Targets,2021,21(5): 443-455. DOI:10.2174/1568009620666201230090531. |
[6] | Chen Y, Fan ZM, Yang Y, et al. Iron metabolism and its contribution to cancer (review)[J].Int J Oncol,2019,54(4): 1143-1154. DOI:10.3892/ijo.2019.4720. pmid:30968149 |
[7] | Torti SV, Manz DH, Paul BT, et al. Iron and cancer[J].Annu Rev Nutr,2018,38: 97-125. DOI:10.1146/annurev-nutr-082117-051732. pmid:30130469 |
[8] | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5): 1060-1072. DOI:10.1016/j.cell.2012.03.042. pmid:22632970 |
[9] | Chifman J, Laubenbacher R, Torti SV. A systems biology approach to iron metabolism[J].Adv Exp Med Biol,2014,844: 201-225. DOI:10.1007/978-1-4939-2095-2_10. pmid:25480643 |
[10] | Ma XW, Zhao JZ, Feng HL. Targeting iron metabolism in osteosarcoma[J].Horm Cancer,2023,14(1): 31. DOI:10.1007/s12672-023-00637-y. |
[11] | Zheng JS, Conrad M. The metabolic underpinnings of ferroptosis[J].Cell Metab,2020,32(6): 920-937. DOI:10.1016/j.cmet.2020.10.011. pmid:33217331 |
[12] | 王福俤. 铁科学(Ferrology): 充满魅力的新型交叉学科[J].中国科学(生命科学),2023,53(10): 1331-1344. |
[13] | 袁嘉豪. International Hepatology|细胞内游离铁是铁调素表达和铁代谢的关键调节子[J].临床肝胆病杂志,2023,39(7): 1686. DOI:10.3969/j.issn.1001-5256.2023.07.026. |
[14] | Zhao JZ, Zhao Y, Ma XW, et al. Targeting ferroptosis in osteosarcoma[J].J Bone Oncol,2021,30: 100380. DOI:10.1016/j.jbo.2021.100380. |
[15] | Jiang MY, Jike YJ, Gan F, et al. Verification of ferroptosis subcluster-associated genes related to osteosarcoma and exploration of immune targeted therapy[J].Oxid Med Cell Longev,2022,2022: 9942014. DOI:10.1155/2022/9942014. |
[16] | 吴娜, 饶颖, 周佳林, 等. 中药通过调节铁死亡作用治疗溃疡性结肠炎的用药规律研究[J].中成药,2023,45(10): 3482-3486. DOI:10.3969/j.issn.1001-1528.2023.10.056. |
[17] | Chen X, Yu CH, Kang R, et al. Iron metabolism in ferroptosis[J].Front Cell Dev Biol,2020,8: 590226. DOI:10.3389/fcell.2020.590226. |
[18] | De Vico G, Martano M, Maiolino PL, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas[J].Vet Med Sci,2020,6(3): 272-276. DOI:10.1002/vms3.258. pmid:32239803 |
[19] | Isani G, Bertocchi M, Andreani G, et al. Cytotoxic effects of artemisia annua L. and pure artemisinin on the D-17 canine osteosarcoma cell line[J].Oxid Med Cell Longev,2019,2019: 1615758. DOI:10.1155/2019/1615758. |
[20] | Jiang MY, Jike YJ, Liu KC, et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1[J].Mol Cancer,2023,22(1): 113. DOI:10.1186/s12943-023-01804-z. pmid:37461104 |
[21] | Zhang JH, Wang XJ, Wu WZ, et al. Expression of the Nrf2 and Keap1 proteins and their clinical significance in osteosarcoma[J].Biochem Biophys Res Commun,2016,473(1): 42-46. DOI:10.1016/j.bbrc.2016.03.047. |
[22] | Fu JK, Li T, Yang YZ, et al. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors[J].Biomaterials,2021,268: 120537. DOI:10.1016/j.biomaterials.2020.120537. |
[23] | Liu Q, Wang KZ. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J].Cell Biol Int,2019,43(11): 1245-1256. DOI:10.1002/cbin.11121. pmid:30811078 |
[24] | Wen RJ, Dong X, Zhuang HW, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis[J].Phytomedicine,2023,116: 154881. DOI:10.1016/j.phymed.2023.154881. |
[25] | Wang LF, Pan S. The regulatory effects of p53 on the typical and atypical ferroptosis in the pathogenesis of osteosarcoma: a systematic review[J].Front Genet,2023,14: 1154299. DOI:10.3389/fgene.2023.1154299. |
[26] | 朱青, 李明, 王佳音, 等. 姜黄素经SLC7A11调控骨肉瘤细胞铁死亡机制初探[J].陕西中医药大学学报,2024,47(2): 17-21. DOI:10.13424/j.cnki.jsctcm.2024.02.004. |
[27] | Luo Y, Gao X, Zou LT, et al. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells[J].Oxid Med Cell Longev,2021,2021: 1783485. DOI:10.1155/2021/1783485. |
[28] | Liu Z, Wang X, Li J, et al. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway[J].Chem Biol Interact,2023,382: 110602. DOI:10.1016/j.cbi.2023.110602. |
[29] | Shi YH, Gong M, Deng ZM, et al. Tirapazamine suppress osteosarcoma cells in part through SLC7A11 mediated ferroptosis[J].Biochem Biophys Res Commun,2021,567: 118-124. DOI:10.1016/j.bbrc.2021.06.036. |
[30] | 石义华.低氧环境下替拉扎明通过SLC7A11介导铁死亡的抗骨肉瘤作用与机制研究[D]. 武汉: 武汉大学,2021. DOI:10.27379/d.cnki.gwhdu.2021.001038. |
[31] | Gao L, Hua WZ, Tian LX, et al. Molecular mechanism of ferroptosis in orthopedic diseases[J].Cells,2022,11(19): 2979. DOI:10.3390/cells11192979. |
[32] | Lv HH, Zhen CX, Liu JY, et al. β-phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway[J].Oxid Med Cell Longev,2020,2020: 5021983. DOI:10.1155/2020/5021983. |
[33] | Lv HH, Zhen CX, Liu JY, et al. PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells[J].Acta Pharmacol Sin,2020,41(8): 1119-1132. DOI:10.1038/s41401-020-0376-8. |
[34] | He T, Lin XH, Yang CH, et al. Theaflavin-3,3'-digallate plays a ROS-mediated dual role in ferroptosis and apoptosis via the MAPK pathway in human osteosarcoma cell lines and xenografts[J].Oxid Med Cell Longev,2022,2022: 8966368. DOI:10.1155/2022/8966368. |
[35] | 张佩.紫铆查尔酮联合爱拉斯汀对骨肉瘤抑制及相关机制研究[D]. 长沙: 中南大学,2022. DOI:10.27661/d.cnki.gzhnu.2022.000701. |
[36] | Lin HYI, Chen XT, Zhang CY, et al. EF24 induces ferroptosis in osteosarcoma cells through HMOX1[J].Biomed Pharmacother,2021,136: 111202. DOI:10.1016/j.biopha.2020.111202. pmid:33453607 |
[37] | Ren TH, Huang J, Sun W, et al. Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells[J].Front Pharmacol,2022,13: 1071946. DOI:10.3389/fphar.2022.1071946. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[3] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[4] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[5] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[6] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[7] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[8] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[9] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[10] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[11] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[12] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[13] | 邓莉莉, 段星宇, 李保中.HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[14] | 刘绍平, 罗汉传, 林书瀚, 罗家辉.中晚期肝细胞癌介入及系统治疗的现状与研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 758-762. |
[15] | 江山, 徐细明.肝细胞癌的靶向及免疫治疗新进展[J]. 国际肿瘤学杂志, 2023, 50(11): 688-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||