国际肿瘤学杂志››2024,Vol. 51››Issue (4): 239-244.doi:10.3760/cma.j.cn371439-20231229-00040
收稿日期:
2023-12-29修回日期:
2024-03-01出版日期:
2024-04-08发布日期:
2024-05-10通讯作者:
袁涛,Email:
作者简介:
王子豪和王宇对本文有同等贡献基金资助:
Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao()
Received:
2023-12-29Revised:
2024-03-01Online:
2024-04-08Published:
2024-05-10Contact:
Yuan Tao, Email:
About author:
Wang Zihao and Wang Yu are contributed equally to the articleSupported by:
摘要:
骨肉瘤作为常见的原发恶性骨肿瘤之一,因其较差的预后及较单一的治疗方式,使得目前临床对骨肉瘤患者的治疗已达到瓶颈期。然而,越来越多的研究发现铁死亡作为一种新型的细胞死亡方式,或可在骨肉瘤的治疗中发挥重要作用。近年来,随着对铁死亡相关机制及分子通路研究的愈加深入,其在骨肉瘤中的特异性治疗策略也相继得以验证,这有望为骨肉瘤患者的临床治疗提供新思路。
王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244.
Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma[J]. Journal of International Oncology, 2024, 51(4): 239-244.
[1] | Lee JA, Lim J, Jin HY, et al. Osteosarcoma in adolescents and young adults[J].Cells,2021,10(10): 2684. DOI:10.3390/cells10102684. |
[2] | Cole S, Gianferante DM, Zhu B, et al. Osteosarcoma: a surveillance, epidemiology, and end results program-based analysis from 1975 to 2017[J].Cancer,2022,128(11): 2107-2118. DOI:10.1002/cncr.34163. |
[3] | Dos Santos AF, Fazeli G, Xavier da Silva TN, et al. Ferroptosis: mechanisms and implications for cancer development and therapy response[J].Trends Cell Biol,2023,33(12): 1062-1076. DOI:10.1016/j.tcb.2023.04.005. |
[4] | Liu X, Du SW, Wang SD, et al. Ferroptosis in osteosarcoma: a promising future[J].Front Oncol,2022,12: 1031779. DOI:10. 3389/fonc.2022.1031779. |
[5] | Lei T, Qian H, Lei PF, et al. Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma[J].Cancer Sci,2021,112(11): 4785-4798. DOI:10.1111/cas.15131. |
[6] | Chen WK, Li ZG, Yu NC, et al. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells[J].J Nanobiotechnology,2023,21(1): 355. DOI:10.1186/s12951-023-02129-1. |
[7] | Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J].Nature,2017,551(7679): 247-250. DOI:10.1038/nature24297. |
[8] | Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J].Int J Mol Sci,2022,24(1): 449. DOI:10.3390/ijms24010449. |
[9] | Guo WT, Wang X, Lu B, et al. Super-enhancer-driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma[J].Cell Death Dis,2023,14(7): 439. DOI:10.1038/s41419-023-05966-y. pmid:37460542 |
[10] | Nie JB, Ling YH, Jin MC, et al. Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway[J].Eur J Pharmacol,2023,957: 176009. DOI:10.1016/j.ejphar.2023.176009. |
[11] | Liu Q, Wang KZ. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J].Cell Biol Int,2019,43(11): 1245-1256. DOI:10.1002/cbin.11121. pmid:30811078 |
[12] | Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis[J].Cell Mol Life Sci,2020,77(22): 4459-4483. DOI:10.1007/s00018-020-03536-5. |
[13] | Gan BY. ACSL4, PUFA, and ferroptosis: new arsenal in anti-tumor immunity[J].Signal Transduct Target Ther,2022,7(1): 128. DOI:10.1038/s41392-022-01004-z. |
[14] | Qiu C, Liu TY, Luo D, et al. Novel therapeutic savior for osteosarcoma: the endorsement of ferroptosis[J].Front Oncol,2022,12: 746030. DOI:10.3389/fonc.2022.746030. |
[15] | Ge ZY, Song DL. A five ferroptosis-related genes risk score for prognostic prediction of osteosarcoma[J].Medicine (Baltimore),2022,101(50): e32083. DOI:10.1097/MD.0000000000032083. |
[16] | Zhang YX, Li SY, Li FZ, et al. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma[J].Biol Direct,2021,16(1): 10. DOI:10.1186/s13062-021-00294-7. pmid:34053456 |
[17] | Lee H, Zandkarimi F, Zhang YL, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J].Nat Cell Biol,2020,22(2): 225-234. DOI:10.1038/s41556-020-0461-8. pmid:32029897 |
[18] | Zhu YR, Zhang XY, Wu QP, et al. PF-06409577 activates AMPK signaling and inhibits osteosarcoma cell growth[J].Front Oncol,2021,11: 659181. DOI:10.3389/fonc.2021.659181. |
[19] | Liu W, Zhao YC, Wang GF, et al. TRIM22 inhibits osteosarcoma progression through destabilizing Nrf2 and thus activation of ROS/AMPK/mTOR/autophagy signaling[J].Redox Biol,2022,53: 102344. DOI:10.1016/j.redox.2022.102344. |
[20] | Wang DY, Wu YN, Huang JQ, et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance[J].Chin J Cancer,2016,35: 47. DOI:10.1186/s40880-016-0109-z. |
[21] | Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death[J].Cells,2020,9(6): 32575749. DOI:10.3390/cells9061505. |
[22] | Han ST, Lin FY, Qi YC, et al. HO-1 contributes to luteolin-triggered ferroptosis in clear cell renal cell carcinoma via increasing the labile iron pool and promoting lipid peroxidation[J].Oxid Med Cell Longev,2022,2022: 3846217. DOI:10.1155/2022/3846217. |
[23] | Li XJ, Liu JY. FANCD2 inhibits ferroptosis by regulating the JAK2/STAT3 pathway in osteosarcoma[J].BMC Cancer,2023,23(1): 179. DOI:10.1186/s12885-023-10626-7. pmid:36814203 |
[24] | Bersuker K, Hendricks JM, Li ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J].Nature,2019,575(7784): 688-692. DOI:10.1038/s41586-019-1705-2. |
[25] | Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J].ACS Cent Sci,2020,6(1): 41-53. DOI:10.1021/acscentsci.9b01063. |
[26] | Mao C, Liu XG, Zhang YL, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J].Nature,2021,593(7860): 586-590. DOI:10.1038/s41586-021-03539-7. |
[27] | Luo Y, Gao X, Zou LT, et al. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells[J].Oxid Med Cell Longev,2021,2021: 1783485. DOI:10.1155/2021/1783485. |
[28] | Liu JY, Lou CG, Zhen CX, et al. Iron plays a role in sulfasalazine-induced ferroptosis with autophagic flux blockage in K7M2 osteosarcoma cells[J].Metallomics,2022,14(5): mfac027. DOI:10.1093/mtomcs/mfac027. |
[29] | Lv HH, Zhen CX, Liu JY, et al. β-Phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway[J].Oxid Med Cell Longev,2020,2020: 5021983. DOI:10.1155/2020/5021983. |
[30] | Lv HH, Zhen CX, Liu JY, et al. PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells[J].Acta Pharmacol Sin,2020,41(8): 1119-1132. DOI:10.1038/s41401-020-0376-8. |
[31] | Fan Q, Zhan XL, Xiao ZM, et al. Phenethyl isothiocyanate enhances adriamycin-induced apoptosis in osteosarcoma cells[J].Mol Med Rep,2015,12(4): 5945-5950. DOI:10.3892/mmr.2015.4187. |
[32] | De Vico G, Martano M, Maiolino PL, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas[J].Vet Med Sci,2020,6(3): 272-276. DOI:10.1002/vms3.258. pmid:32239803 |
[33] | Salaroli R, Andreani G, Bernardini C, et al. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines[J].Res Vet Sci,2022,152: 476-484. DOI:10.1016/j.rvsc.2022.09.012. pmid:36156377 |
[34] | Chen M, Jiang YH, Sun YB. KDM4A-mediated histone demethy-lation of SLC7A11 inhibits cell ferroptosis in osteosarcoma[J].Biochem Biophys Res Commun,2021,550: 77-83. DOI:10.1016/j.bbrc.2021.02.137. |
[35] | Xu WN, Yang RZ, Zheng HL, et al. NDUFA4L2 regulated by HIF-1α promotes metastasis and epithelial-mesenchymal transition of osteosarcoma cells through inhibiting ROS production[J].Front Cell Dev Biol,2020,8: 515051. DOI:10.3389/fcell.2020.515051. |
[36] | 马小平, 常君丽, 孙星媛, 等. 长非编码RNA调控骨肉瘤耐药机制的研究进展[J].国际肿瘤学杂志,2023,50(1): 51-54. DOI:10.3760/cma.j.cn371439-20221005-00010. |
[37] | Liu YF, Zhang ZM, Li Q, et al. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma[J].Oncol Rep,2020,44(2): 499-508. DOI:10.3892/or.2020.7633. pmid:32627008 |
[38] | Zhang YN, Shen GH, Meng TT, et al. Eicosapentaenoic acid enhances the sensitivity of osteosarcoma to cisplatin by inducing ferroptosis through the DNA-PKcs/AKT/NRF2 pathway and reducing PD-L1 expression to attenuate immune evasion[J].Int Immunopharmacol,2023,125(Pt B): 111181. DOI:10.1016/j.intimp.2023.111181. |
[39] | Liu L, Geng H, Mei CJ, et al. Zoledronic acid enhanced the antitumor effect of cisplatin on orthotopic osteosarcoma by ROS-PI3K/Akt signaling and attenuated osteolysis[J].Oxid Med Cell Longev,2021,2021: 6661534. DOI:10.1155/2021/6661534. |
[40] | Tang Z, Dong H, Li T, et al. The synergistic reducing drug resistance effect of cisplatin and ursolic acid on osteosarcoma through a multistep mechanism involving ferritinophagy[J].Oxid Med Cell Longev,2021,2021: 5192271. DOI:10.1155/2021/5192271. |
[1] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[2] | 刘小洁, 黄俊星.NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. |
[3] | 马小平, 常君丽, 孙星媛, 杨燕萍.长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. |
[4] | 肖楠, 孙鹏飞.氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[5] | 杨娅, 宁晓飞, 李炳亮, 姚慧, 山长平, 吕敏.原花青素通过诱导活性氧产生介导抗SNU-1胃癌细胞株的作用机制研究[J]. 国际肿瘤学杂志, 2022, 49(5): 257-262. |
[6] | 周仁邦, 张仲传, 许志远, 朱勋兵.miR-219a-5p通过负调控HMGA2抑制骨肉瘤U2OS细胞增殖、侵袭和迁移[J]. 国际肿瘤学杂志, 2022, 49(4): 193-198. |
[7] | 曾艳, 罗盼, 王子琪, 吴伟莉.药物在头颈部肿瘤治疗中引起铁死亡的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 173-176. |
[8] | 周欣宇, 贾秀红.铁死亡在白血病治疗中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(12): 759-762. |
[9] | 张永丽, 张若佳, 范焕彩, 葛鲁娜, 王林.TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. |
[10] | 李炳亮, 杨娅, 黄英丽, 司文, 李兴伟, 张元民, 卞继超, 陈语.miR-20a-5p靶向KDM6B对骨肉瘤细胞增殖、迁移和侵袭能力的影响[J]. 国际肿瘤学杂志, 2021, 48(2): 65-73. |
[11] | 施玥, 李晟, 冯继锋.急腹症风险下转移灶不可切除结直肠癌原发灶的处理方式选择[J]. 国际肿瘤学杂志, 2021, 48(11): 693-697. |
[12] | 徐一月, 赵少荣, 刘晶晶, 张瑾.细胞铁死亡调控机制及其在乳腺癌治疗中的意义[J]. 国际肿瘤学杂志, 2020, 47(6): 372-376. |
[13] | 杨怡婷, 程忠平.炎症细胞因子在卵巢上皮癌化疗耐药中的作用[J]. 国际肿瘤学杂志, 2020, 47(4): 249-251. |
[14] | 衣琳, 邱实.紫草素抗胶质瘤效应及其作用机制[J]. 国际肿瘤学杂志, 2019, 46(8): 489-491. |
[15] | 何剑波, 宁瑞玲, 蒋玮, 刘乾飞, 曾爱屏.重组人血管内皮抑制素优化给药策略联合化疗治疗晚期野生型NSCLC的临床观察[J]. 国际肿瘤学杂志, 2019, 46(8): 509-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||