国际肿瘤学杂志››2022,Vol. 49››Issue (3): 173-176.doi:10.3760/cma.j.cn371439-20210922-00029
收稿日期:
2021-09-22修回日期:
2021-10-07出版日期:
2022-03-08发布日期:
2022-03-22通讯作者:
吴伟莉 E-mail:wwlmhy@163.com基金资助:
Zeng Yan1, Luo Pan1, Wang Ziqi1, Wu Weili1,2,3()
Received:
2021-09-22Revised:
2021-10-07Online:
2022-03-08Published:
2022-03-22Contact:
Wu Weili E-mail:wwlmhy@163.comSupported by:
摘要:
铁死亡是一种由脂质活性氧驱动的铁依赖形式的调节性细胞死亡,在肿瘤的发生发展中发挥重要作用。多种临床药物如青蒿素衍生物、伊曲康唑、柳氮磺胺吡啶、葫芦素B、紫杉醇、双硫仑/铜等可通过不同机制诱发头颈部肿瘤铁死亡从而抑制肿瘤生长。对临床常用药物在头颈部肿瘤治疗中诱导铁死亡的调控机制进行研究,可为头颈部肿瘤铁死亡的靶点治疗提供参考。
曾艳, 罗盼, 王子琪, 吴伟莉. 药物在头颈部肿瘤治疗中引起铁死亡的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 173-176.
Zeng Yan, Luo Pan, Wang Ziqi, Wu Weili. Mechanism of drug induced ferroptosis in the treatment of head and neck tumors[J]. Journal of International Oncology, 2022, 49(3): 173-176.
[1] | Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1):92. DOI: 10.1038/s41572-020-00224-3. doi:10.1038/s41572-020-00224-3pmid:33243986 |
[2] | Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6):478-490. DOI: 10.1016/j.tcb.2020.02.009. doi:S0962-8924(20)30054-4pmid:32413317 |
[3] | Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3):369-379. DOI: 10.1038/cdd.2015.158. doi:10.1038/cdd.2015.158pmid:26794443 |
[4] | Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6):830-849. DOI: 10.1016/j.ccell.2019.04.002. doi:S1535-6108(19)30197-7pmid:31105042 |
[5] | Alvarez SW, Sviderskiy VO, Terzi EM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682):639-643. DOI: 10.1038/nature24637. doi:10.1038/nature24637 |
[6] | Seiler A, Schneider M, Förster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase depen-dent- and AIF-mediated cell death[J]. Cell Metab, 2008, 8(3):237-248. DOI: 10.1016/j.cmet.2008.07.005. doi:10.1016/j.cmet.2008.07.005 |
[7] | Efferth T. From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy[J]. Semin Cancer Biol, 2017, 46:65-83. DOI: 10.1016/j.semcancer.2017.02.009. doi:S1044-579X(17)30029-9pmid:28254675 |
[8] | Lin R, Zhang Z, Chen L, et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells[J]. Cancer Lett, 2016, 381(1):165-175. DOI: 10.1016/j.canlet.2016.07.033. doi:10.1016/j.canlet.2016.07.033 |
[9] | Roh JL, Kim EH, Jang H, et al. Nrf2 inhibition reverses the resis-tance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis[J]. Redox Biol, 2017, 11:254-262. DOI: 10.1016/j.redox.2016.12.010. doi:10.1016/j.redox.2016.12.010 |
[10] | Zhang W, Bhagwath AS, Ramzan Z, et al. Itraconazole exerts its antitumor effect in esophageal cancer by suppressing the HER2/AKT signaling pathway[J]. Mol Cancer Ther, 2021, 20(10):1904-1915. DOI: 10.1158/1535-7163.MCT-20-0638. doi:10.1158/1535-7163.MCT-20-0638pmid:34376577 |
[11] | Takahashi S, Karayama M, Takahashi M, et al. Pharmacokinetics, safety, and efficacy of trastuzumab deruxtecan with concomitant ritonavir or itraconazole in patients with HER2-expressing advanced solid tumors[J]. Clin Cancer Res, 2021, 27(21):5771-5780. DOI: 10.1158/1078-0432.CCR-21-1560. doi:10.1158/1078-0432.CCR-21-1560 |
[12] | Buczacki SJA, Popova S, Biggs E, et al. Itraconazole targets cell cycle heterogeneity in colorectal cancer[J]. J Exp Med, 2018, 215(7):1891-1912. DOI: 10.1084/jem.20171385. doi:10.1084/jem.20171385 |
[13] | Gerber DE, Putnam WC, Fattah FJ, et al. Concentration-dependent early antivascular and antitumor effects of itraconazole in non-small cell lung cancer[J]. Clin Cancer Res, 2020, 26(22):6017-6027. DOI: 10.1158/1078-0432.CCR-20-1916. doi:10.1158/1078-0432.CCR-20-1916 |
[14] | Xu Y, Wang Q, Li X, et al. Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis[J]. Environ Toxicol, 2021, 36(2):257-266. DOI: 10.1002/tox.23031. doi:10.1002/tox.23031 |
[15] | Zhao B, Li X, Wang Y, et al. Iron-dependent cell death as executioner of cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1):79. DOI: 10.1186/s13046-018-0733-3. doi:10.1186/s13046-018-0733-3 |
[16] | Ji X, Qian J, Rahman SMJ, et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression[J]. Oncogene, 2018, 37(36):5007-5019. DOI: 10.1038/s41388-018-0307-z. doi:10.1038/s41388-018-0307-z |
[17] | Shin D, Kim EH, Lee J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer[J]. Free Radic Biol Med, 2018, 129:454-462. DOI: 10.1016/j.freeradbiomed.2018.10.426. doi:10.1016/j.freeradbiomed.2018.10.426 |
[18] | Pouillon L, Bossuyt P, Vanderstukken J, et al. Management of patients with inflammatory bowel disease and spondyloarthritis[J]. Expert Rev Clin Pharmacol, 2017, 10(12):1363-1374. DOI: 10.1080/17512433.2017.1377609. doi:10.1080/17512433.2017.1377609 |
[19] | Gout PW, Buckley AR, Simms CR, et al. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)-cystine transporter: a new action for an old drug[J]. Leukemia, 2001, 15(10):1633-1640. DOI: 10.1038/sj.leu.2402238. doi:10.1038/sj.leu.2402238pmid:11587223 |
[20] | Kim EH, Shin D, Lee J, et al. CISD2 inhibition overcomes resis-tance to sulfasalazine-induced ferroptotic cell death in head and neck cancer[J]. Cancer Lett, 2018, 432:180-190. DOI: 10.1016/j.canlet.2018.06.018. doi:10.1016/j.canlet.2018.06.018 |
[21] | Yuan R, Zhao W, Wang QQ, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis[J]. Pharmacol Res, 2021, 170:105748. DOI: 10.1016/j.phrs.2021.105748. doi:10.1016/j.phrs.2021.105748 |
[22] | Bakar-Ates F, Ozkan E, Sengel-Turk CT. Encapsulation of cucur-bitacin B into lipid polymer hybrid nanocarriers induced apoptosis of MDAMB231 cells through PARP cleavage[J]. Int J Pharm, 2020, 586:119565. DOI: 10.1016/j.ijpharm.2020.119565. doi:10.1016/j.ijpharm.2020.119565 |
[23] | Wang K, Ye H, Zhang X, et al. An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast cancer metastasis inhibition[J]. Biomaterials, 2020, 257:120224. DOI: 10.1016/j.biomaterials.2020.120224. doi:10.1016/j.biomaterials.2020.120224 |
[24] | Tao B, Wang D, Yang S, et al. Cucurbitacin B inhibits cell proli-feration by regulating X-inactive specific transcript expression in tongue cancer[J]. Front Oncol, 2021, 11:651648. DOI: 10.3389/fonc.2021.651648. doi:10.3389/fonc.2021.651648 |
[25] | Huang S, Cao B, Zhang J, et al. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential[J]. Cell Death Dis, 2021, 12(3):237. DOI: 10.1038/s41419-021-03516-y. doi:10.1038/s41419-021-03516-y |
[26] | Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62. DOI: 10.1038/nature14344. doi:10.1038/nature14344 |
[27] | Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci U S A, 2016, 113(44):E6806-E6812. DOI: 10.1073/pnas.1607152113. doi:10.1073/pnas.1607152113 |
[28] | Wen G, Qu XX, Wang D, et al. Recent advances in design, synjournal and bioactivity of paclitaxel-mimics[J]. Fitoterapia, 2016, 110:26-37. DOI: 10.1016/j.fitote.2016.02.010. doi:10.1016/j.fitote.2016.02.010 |
[29] | Ye J, Jiang X, Dong Z, et al. Low-concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma[J]. Cancer Manag Res, 2019, 11:9783-9792. DOI: 10.2147/CMAR.S217944. doi:10.2147/CMAR.S217944 |
[30] | McMahon A, Chen W, Li F. Old wine in new bottles: advanced drug delivery systems for disulfiram-based cancer therapy[J]. J Control Release, 2020, 319:352-359. DOI: 10.1016/j.jconrel.2020.01.001. doi:10.1016/j.jconrel.2020.01.001 |
[31] | Li Y, Chen F, Chen J, et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associa-ted fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers (Basel), 2020, 12(1):138. DOI: 10.3390/cancers12010138. doi:10.3390/cancers12010138 |
[1] | 陈琦, 徐晨阳, 王寅, 雷大鹏.高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[4] | 崔腾璐, 吕璐, 孙鹏飞.放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[5] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏.免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[6] | 王军, 贾秀红.TGF-β/Smad信号通路与急性白血病[J]. 国际肿瘤学杂志, 2023, 50(8): 498-502. |
[7] | 鞠逸凡, 徐晨阳, 雷大鹏.病理组学在头颈部肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 294-298. |
[8] | 许婷婷, 胡超苏, 李宝生.抗EGFR单抗治疗局部晚期头颈部鳞状细胞癌临床共识(2023年版)[J]. 国际肿瘤学杂志, 2023, 50(1): 1-11. |
[9] | 陈怡, 韩靓, 蔡雳.头颈部肿瘤患者化疗性口腔黏膜炎发生的多因素分析[J]. 国际肿瘤学杂志, 2022, 49(9): 521-525. |
[10] | 王丽薇, 梁洪生, 杜松林, 陈志豪, 王晴, 高爱丽.阿维菌素类药物在抗肿瘤方面的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 353-356. |
[11] | 庞静丹, 杜瀛瀛, 笪洁.抗体药物偶联物治疗晚期实体瘤的不良反应和处理措施[J]. 国际肿瘤学杂志, 2022, 49(4): 220-224. |
[12] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会.中国头颈部肿瘤放射治疗指南(2021年版)[J]. 国际肿瘤学杂志, 2022, 49(2): 65-72. |
[13] | 周欣宇, 贾秀红.铁死亡在白血病治疗中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(12): 759-762. |
[14] | 劳峥, 涂文勇, 徐璇丽, 张霖, 邵滋旸, 石慧烽.尼妥珠单抗联合根治性放疗治疗局部晚期不可手术的口腔颌面部鳞状细胞癌[J]. 国际肿瘤学杂志, 2022, 49(11): 665-670. |
[15] | 杨驰, 罗长江.结直肠癌炎症、免疫及胆固醇代谢背景研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 630-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||