国际肿瘤学杂志››2023,Vol. 50››Issue (8): 498-502.doi:10.3760/cma.j.cn371439-20230523-00095
收稿日期:
2023-05-23修回日期:
2023-07-01出版日期:
2023-08-08发布日期:
2023-10-24通讯作者:
贾秀红 E-mail:jiaxiuhong001@163.comReceived:
2023-05-23Revised:
2023-07-01Online:
2023-08-08Published:
2023-10-24Contact:
Jia Xiuhong E-mail:jiaxiuhong001@163.com摘要:
转化生长因子β(TGF-β)/Smad信号通路是人体细胞内的一种重要的信号通路,可调控细胞的生长、增殖与凋亡等生命活动,其信号转导由配体与受体结合、细胞质内信号通路、细胞核内相互作用三部分组成。该信号通路与急性白血病的发病机制、耐药、复发及预后密切相关,探究该信号通路的直接抑制剂、相关治疗靶点及天然提取物对白血病治疗的潜能,可为研究白血病的生物标志物和靶向基因治疗提供新思路。
王军, 贾秀红. TGF-β/Smad信号通路与急性白血病[J]. 国际肿瘤学杂志, 2023, 50(8): 498-502.
Wang Jun, Jia Xiuhong. TGF-β/Smad signal pathway and acute leukemia[J]. Journal of International Oncology, 2023, 50(8): 498-502.
[1] | Huang CH, Liao YJ, Chiou TJ, et al. TGF-β regulated leukemia cell susceptibility against NK targeting through the down-regulation of the CD48 expression[J].Immunobiology,2019,224(5): 649-658. DOI:10.1016/j.imbio.2019.07.002. |
[2] | Wang X, Dong F, Zhang S, et al. TGF-β1 negatively regulates the number and function of hematopoietic stem cells[J].Stem Cell Reports,2018,11(1): 274-287. DOI:10.1016/j.stemcr.2018.05.017. pmid:29937145 |
[3] | David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer[J].Nat Rev Mol Cell Biol,2018,19(7): 419-435. DOI:10.1038/s41580-018-0007-0. |
[4] | Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J].Cell,2003,113(6): 685-700. DOI:10.1016/S0092-8674(03)00432-X. |
[5] | Zhang YE. Non-smad signaling pathways of the TGF-β family[J].Cold Spring Harb Perspect Biol,2017,9(2): a022129. DOI:10.1101/cshperspect.a022129. |
[6] | Peters C, Meyer A, Kouakanou L, et al. TGF-β enhances the cytotoxic activity of Vδ2 T cells[J].Oncoimmunology,2019,8(1): e1522471. DOI:10.1080/2162402X.2018.1522471. |
[7] | Beatson RE, Parente-Pereira AC, Halim L, et al. TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer[J].Cell Rep Med,2021,2(12): 100473. DOI:10.1016/j.xcrm.2021.100473. |
[8] | 陈文婷, 黄莹, 潘艳萍, 等. TGFβ1在急性髓系白血病中的异常表达及其对白血病细胞的调控[J].海南医学院学报,2022,28(24): 1889-1895, 1903. DOI:10.13210/j.cnki.jhmu.20221011.001. |
[9] | El-Asmi F, El-Mchichi B, Maroui MA, et al. TGF-β induces PML SUMOylation, degradation and PML nuclear body disruption[J].Cytokine,2019,120: 264-272. DOI:10.1016/j.cyto.2019.05.008. pmid:31153006 |
[10] | Dahariya S, Raghuwanshi S, Sangeeth A, et al. Megakaryoblastic leukemia: a study on novel role of clinically significant long non-coding RNA signatures in megakaryocyte development during treatment with phorbol ester[J].Cancer Immunol Immunother,2021,70(12): 3477-3488. DOI:10.1007/s00262-021-02937-0. |
[11] | Liu SX, Xiao HR, Wang GB, et al. Preliminary investigation on the abnormal mechanism of CD4+FOXP3+CD25highregulatory T cells in pediatric B-cell acute lymphoblastic leukemia[J].Exp Ther Med,2018,16(2): 1433-1441. DOI:10.3892/etm.2018.6326. |
[12] | El-maadawy EA, Elshal MF, Bakry RM, et al. Regulation of CD4+CD25+FOXP3+cells in pediatric acute lymphoblastic leukemia (ALL): implication of cytokines and miRNAs[J].Mol Immunol,2020,124: 1-8. DOI:10.1016/j.molimm.2020.05.002. pmid:32480291 |
[13] | Naghavi Alhosseini M, Palazzo M, Cari L, et al. Overexpression of potential markers of regulatory and exhausted CD8+T cells in the peripheral blood mononuclear cells of patients with B-acute lymphoblastic leukemia[J].Int J Mol Sci,2023,24(5): 4526. DOI:10.3390/ijms24054526. |
[14] | Yu H, Huang T, Wang D, et al. Acute lymphoblastic leukemia-derived exosome inhibits cytotoxicity of natural killer cells by TGF-β signaling pathway[J].3 Biotech,2021,11(7): 313. DOI:10.1007/s13205-021-02817-5. pmid:34109098 |
[15] | Pan C, Liu P, Ma D, et al. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia[J].Biomed Pharmacother,2020,130: 110610. DOI:10.1016/j.biopha.2020.110610. pmid:34321159 |
[16] | Pan C, Fang Q, Liu P, et al. Mesenchymal stem cells with cancer-associated fibroblast-like phenotype stimulate SDF-1/CXCR4 axis to enhance the growth and invasion of B-cell acute lymphoblastic leukemia cells through cell-to-cell communication[J].Front Cell Dev Biol,2021,9: 708513. DOI:10.3389/fcell.2021.708513. |
[17] | Portale F, Cricrì G, Bresolin S, et al. ActivinA: a new leukemia-promoting factor conferring migratory advantage to B-cell precursor-acute lymphoblastic leukemic cells[J].Haematologica,2019,104(3): 533-545. DOI:10.3324/haematol.2018.188664. pmid:30262563 |
[18] | Portale F, Beneforti L, Fallati A, et al. Activin A contributes to the definition of a pro-oncogenic bone marrow microenvironment in t(12;21) preleukemia[J].Exp Hematol,2019,73: 7-12.e4. DOI:10.1016/j.exphem.2019.02.006. pmid:30825516 |
[19] | Yuan B, El Dana F, Ly S, et al. Bone marrow stromal cells induce an ALDH+stem cell-like phenotype and enhance therapy resistance in AML through a TGF-β-p38-ALDH2 pathway[J].PLoS One,2020,15(11): e0242809. DOI:10.1371/journal.pone.0242809. |
[20] | Shingai Y, Yokota T, Okuzaki D, et al. Autonomous TGFβ signaling induces phenotypic variation in human acute myeloid leukemia[J].Stem Cells,2021,39(6): 723-736. DOI:10.1002/stem.3348. pmid:33539590 |
[21] | Vicioso Y, Gram H, Beck R, et al. Combination therapy for treating advanced drug-resistant acute lymphoblastic leukemia[J].Cancer Immunol Res,2019,7(7): 1106-1119. DOI:10.1158/2326-6066.CIR-19-0058. pmid:31138521 |
[22] | 仲华, 林志强, 薄德映, 等. TGF-β1、GM-CSF及TNF-α对急性髓系白血病患者病情转归的评估[J].分子诊断与治疗杂志,2021,13(5): 807-810, 815. DOI:10.19930/j.cnki.jmdt.2021.05.032. |
[23] | 陈文婷, 姚红霞, 吴从明, 等. TGFβ1及VEGF基因在急性髓系白血病患者中的表达水平及其临床预后价值[J].中国实验血液学杂志,2020,28(1): 130-135. DOI:10.19746/j.cnki.issn1009-2137.2020.01.022. |
[24] | 雷永兰, 牛敏, 李靖, 等. NLR联合血清β2-MG、TGF-β1对急性髓系白血病的预后分析价值[J].临床血液学杂志,2021,34(10): 728-731. DOI:10.13201/j.issn.1004-2806.2021.10.011. |
[25] | 任丽蓉, 官晓红, 练颖, 等. 急性髓系白血病患者血清β2-MG、HGF、TGFβ1表达及临床意义[J].标记免疫分析与临床,2020,27(3): 488-492. DOI:10.11748/bjmy.issn.1006-1703.2020.03.029. |
[26] | Zhang J, Zhang L, Cui H, et al. High expression levels of SMAD3 and SMAD7 at diagnosis predict poor prognosis in acute myeloid leukemia patients undergoing chemotherapy[J].Cancer Gene Ther,2019,26(5/6): 119-127. DOI:10.1038/s41417-018-0044-z. |
[27] | Bataller A, Montalban-Bravo G, Soltysiak KA, et al. The role of TGFβ in hematopoiesis and myeloid disorders[J].Leukemia,2019,33(5): 1076-1089. DOI:10.1038/s41375-019-0420-1. pmid:30816330 |
[28] | 杨丽媛, 汪路, 唐雨婷, 等. TGF-β信号通路抑制剂LY364947对急性髓系白血病细胞增殖、凋亡和侵袭的影响[J].中国细胞生物学学报,2019,41(2): 256-264. |
[29] | Chen J, Mu Q, Li X, et al. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells[J].Oncotarget,2017,8(25): 40318-40326. DOI:10.18632/oncotarget.16956. pmid:28454099 |
[30] | 陈相言, 刘徽, 杨欢. 马钱苷元对白血病HL-60细胞生长及TGF-β1表达的影响[J].河北医药,2022,44(23): 3549-3553. DOI:10.3969/j.issn.1002-7386.2022.23.006. |
[31] | 王蕾, 李艳. p27Kip1在As2O3诱导白血病细胞凋亡中的作用机制[J].现代肿瘤医学,2017,25(21): 3384-3389. DOI:10.3969/j.issn.1672-4992.2017.21.002. |
[32] | 王晓军, 茹甫毅, 吴双有, 等. 白藜芦醇对K562细胞COX-2、bFGF、TGFβ1及VEGF基因表达的影响[J].现代肿瘤医学,2017,25(10): 1549-1553. DOI:10.3969/j.issn.1672-4992.2017.10.009. |
[33] | Bagheri P, Sharifi M, Ghadiri A. Downregulation of MIR100HG induces apoptosis in human megakaryoblastic leukemia cells[J].Indian J Hematol Blood Transfus,2021,37(2): 232-239. DOI:10.1007/s12288-020-01324-6. |
[34] | Jiang M, Zou X, Huang W. Ecotropic viral integration site 1 regulates the progression of acute myeloid leukemia via MS4A3-mediated TGFβ/EMT signaling pathway[J].Oncol Lett,2018,16(2): 2701-2708. DOI:10.3892/ol.2018.8890. pmid:30013666 |
[35] | 白琴, 汪嘉莉, 曾莉, 等. hsa-miR-23a-3p靶向TGFβ2对急性淋巴细胞白血病CEM/C1细胞增殖、凋亡、侵袭及细胞骨架重组的影响[J].广西医科大学学报,2021,38(12): 2265-2271. DOI:10.16190/j.cnki.45-1211/r.2021.12.011. |
[36] | Erkeland SJ, Stavast CJ, Schilperoord-Vermeulen J, et al. The miR-200c/141-ZEB2-TGFβ axis is aberrant in human T-cell prolymphocytic leukemia[J].Haematologica,2022,107(1): 143-153. DOI:10.3324/haematol.2020.263756. |
[37] | Xu D, Jiang J, He G, et al. miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression[J].Anticancer Drugs,2022,33(1): e662-e669. DOI:10.1097/CAD.0000000000001231. |
[1] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华.炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 张文馨, 夏泠, 彭晋, 周福祥.甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[4] | 王昆, 周中新, 臧其威.血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[5] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇.信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[6] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[7] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[8] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好.基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[9] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[10] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹.胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[11] | 李济时, 陆钊群, 刘俊茹, 吕建勋, 陈霜, 沈琳, 徐志渊, 吴平安.新辅助放疗联合部分喉切除术治疗喉滑膜肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(2): 123-125. |
[12] | 金旭东, 陈忠坚, 毛伟敏.MTAP基因在恶性间皮瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 99-104. |
[13] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会.中国食管癌放射治疗指南(2023年版)[J]. 国际肿瘤学杂志, 2024, 51(1): 1-20. |
[14] | 高新雨, 李振江, 孙洪福, 韩丹, 赵倩, 刘成新, 黄伟.基于MR加速器的MR引导放疗在食管癌患者中的临床应用[J]. 国际肿瘤学杂志, 2024, 51(1): 37-42. |
[15] | 崔腾璐, 吕璐, 孙鹏飞.放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||