国际肿瘤学杂志››2022,Vol. 49››Issue (6): 357-361.doi:10.3760/cma.j.cn371439-20220309-00068
收稿日期:
2022-03-09修回日期:
2022-03-18出版日期:
2022-06-08发布日期:
2022-06-30通讯作者:
孙鹏飞 E-mail:ery_sunpf@lzu.edu.cnReceived:
2022-03-09Revised:
2022-03-18Online:
2022-06-08Published:
2022-06-30Contact:
Sun Pengfei E-mail:ery_sunpf@lzu.edu.cn摘要:
氧化应激后神经胶质瘤细胞中活性氧大量产生并累积,为避免发生细胞功能障碍,胶质瘤细胞可在DNA损伤修复、脂质过氧化和蛋白质修饰等生物过程中做出适应性反应,产生放化疗抵抗。核转录因子红系2相关因子2、溶质载体家族7成员11、谷胱甘肽、微小RNA作为关键调控因子,其表达可调控活性氧水平、改变胶质瘤氧化应激状态、影响放化疗敏感性。深入了解氧化应激与胶质瘤放化疗敏感性的关系,可为胶质瘤精准治疗提供理论依据。
肖楠, 孙鹏飞. 氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361.
Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas[J]. Journal of International Oncology, 2022, 49(6): 357-361.
[1] | Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2021, 499: 60-72. DOI: 10.1016/j.canlet.2020.10.050. doi:10.1016/j.canlet.2020.10.050pmid:33166616 |
[2] | Sies H. Oxidative stress: concept and some practical aspects[J]. Antioxidants (Basel), 2020, 9(9): 852. DOI: 10.3390/antiox9090852. doi:10.3390/antiox9090852 |
[3] | Moloney JN, Cotter TG. ROS signalling in the biology of cancer[J]. Semin Cell Dev Biol, 2018, 80: 50-64. DOI: 10.1016/j.semcdb.2017.05.023. doi:10.1016/j.semcdb.2017.05.023 |
[4] | Olivier C, Oliver L, Lalier L, et al. Drug resistance in glioblastoma: the two faces of oxidative stress[J]. Front Mol Biosci, 2020, 7: 620677. DOI: 10.3389/fmolb.2020.620677. doi:10.3389/fmolb.2020.620677 |
[5] | Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer[J]. Redox Biol, 2019, 25: 101084. DOI: 10.1016/j.redox.2018.101084. doi:10.1016/j.redox.2018.101084 |
[6] | Venere M, Hamerlik P, Wu Q, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells[J]. Cell Death Differ, 2014, 21(2): 258-269. DOI: 10.1038/cdd.2013.136. doi:10.1038/cdd.2013.136pmid:24121277 |
[7] | Sim HW, Galanis E, Khasraw M. PARP inhibitors in glioma: a review of therapeutic opportunities[J]. Cancers (Basel), 2022, 14(4): 1003. DOI: 10.3390/cancers14041003. doi:10.3390/cancers14041003 |
[8] | Ghorai A, Mahaddalkar T, Thorat R, et al. Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence[J]. Cancer Lett, 2020, 490: 44-53. DOI: 10.1016/j.canlet.2020.06.023. doi:S0304-3835(20)30353-0pmid:32645394 |
[9] | Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev, 2019, 2019: 5080843. DOI: 10.1155/2019/5080843. doi:10.1155/2019/5080843 |
[10] | Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021. doi:S0092-8674(17)31070-Xpmid:28985560 |
[11] | Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. DOI: 10.1007/s13238-020-00789-5. doi:10.1007/s13238-020-00789-5 |
[12] | Cheng J, Fan YQ, Liu BH, et al. ACSL 4 suppresses glioma cells proliferation via activating ferroptosis[J]. Oncol Rep, 2020, 43(1): 147-158. DOI: 10.3892/or.2019.7419. doi:10.3892/or.2019.7419pmid:31789401 |
[13] | Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3): 420-432. e9. DOI: 10.1016/j.chembiol.2018.11.016. doi:S2451-9456(18)30438-0pmid:30686757 |
[14] | Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J]. ACS Chem Biol, 2020, 15(2): 469-484. DOI: 10.1021/acschembio.9b00939. doi:10.1021/acschembio.9b00939 |
[15] | Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer[J]. DNA Repair (Amst), 2019, 76: 60-69. DOI: 10.1016/j.dnarep.2019.02.006. doi:10.1016/j.dnarep.2019.02.006 |
[16] | Hauck AK, Huang Y, Hertzel AV, et al. Adipose oxidative stress and protein carbonylation[J]. J Biol Chem, 2019, 294(4): 1083-1088. DOI: 10.1074/jbc.R118.003214. doi:10.1074/jbc.R118.003214pmid:30563836 |
[17] | Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive oxygen and nitrogen species-induced protein modifications: implication in carcinogenesis and anticancer therapy[J]. Cancer Res, 2018, 78(21): 6040-6047. DOI: 10.1158/0008-5472.CAN-18-0980. doi:10.1158/0008-5472.CAN-18-0980pmid:30327380 |
[18] | Vandenberk L, Garg AD, Verschuere T, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma[J]. Oncoimmunology, 2015, 5(2): e1083669. DOI: 10.1080/2162402X.2015.1083669. doi:10.1080/2162402X.2015.1083669 |
[19] | 张永丽, 张若佳, 范焕彩, 等. TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. DOI: 10.3760/cma.j.cn371439-20210324-00090. doi:10.3760/cma.j.cn371439-20210324-00090 |
[20] | Yao A, Storr SJ, Al-Hadyan K, et al. Thioredoxin system protein expression is associated with poor clinical outcome in adult and paediatric gliomas and medulloblastomas[J]. Mol Neurobiol, 2020, 57(7): 2889-2901. DOI: 10.1007/s12035-020-01928-z. doi:10.1007/s12035-020-01928-z |
[21] | Jovanović M, Dragoj M, Zhukovsky D, et al. Novel TrxR1 inhibitors show potential for glioma treatment by suppressing the invasion and sensitizing glioma cells to chemotherapy[J]. Front Mol Biosci, 2020, 7: 586146. DOI: 10.3389/fmolb.2020.586146. doi:10.3389/fmolb.2020.586146 |
[22] | Burić SS, Podolski-Renić A, Dinić J, et al. Modulation of antioxidant potential with coenzyme Q10 suppressed invasion of temozolomide-resistant rat glioma in vitro and in vivo[J]. Oxid Med Cell Longev, 2019, 2019: 3061607. DOI: 10.1155/2019/3061607. doi:10.1155/2019/3061607 |
[23] | Frontiñán-Rubio J, Santiago-Mora RM, Nieva-Velasco CM, et al. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide[J]. Radiother Oncol, 2018, 128(2): 236-244. DOI: 10.1016/j.radonc.2018.04.033. doi:S0167-8140(18)30240-8pmid:29784452 |
[24] | Zhu Z, Du S, Du Y, et al. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis[J]. J Neurochem, 2018, 144(1): 93-104. DOI: 10.1111/jnc.14250. doi:10.1111/jnc.14250 |
[25] | Zimta AA, Cenariu D, Irimie A, et al. The role of Nrf2 activity in cancer development and progression[J]. Cancers (Basel), 2019, 11(11): 1755. DOI: 10.3390/cancers11111755. doi:10.3390/cancers11111755 |
[26] | Cockfield JA, Schafer ZT. Antioxidant defenses: a context-specific vulnerability of cancer cells[J]. Cancers (Basel), 2019, 11(8): 1208. DOI: 10.3390/cancers11081208. doi:10.3390/cancers11081208 |
[27] | Wang J, Wang H, Sun K, et al. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway[J]. Drug Des Devel Ther, 2018, 12: 721-733. DOI: 10.2147/DDDT.S160020. doi:10.2147/DDDT.S160020 |
[28] | Liu Y, Lu Y, Celiku O, et al. Targeting IDH1-mutated malignancies with NRF2 blockade[J]. J Natl Cancer Inst, 2019, 111(10): 1033-1041. DOI: 10.1093/jnci/djy230. doi:10.1093/jnci/djy230 |
[29] | Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun (Lond), 2018, 38(1): 12. DOI: 10.1186/s40880-018-0288-x. doi:10.1186/s40880-018-0288-x |
[30] | Dąbrowska K, Skowrońska K, Popek M, et al. The role of Nrf2 transcription factor and Sp1-Nrf2 protein complex in glutamine transporter SN1 regulation in mouse cortical astrocytes exposed to ammonia[J]. Int J Mol Sci, 2021, 22(20): 11233. DOI: 10.3390/ijms222011233. doi:10.3390/ijms222011233 |
[31] | Yu D, Liu Y, Zhou Y, et al. Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism[J]. Proc Natl Acad Sci U S A, 2020, 117(18): 9964-9972. DOI: 10.1073/pnas.1913633117. doi:10.1073/pnas.1913633117 |
[32] | Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020, 30(2): 146-162. DOI: 10.1038/s41422-019-0263-3. doi:10.1038/s41422-019-0263-3 |
[33] | Garcia CG, Kahn SA, Geraldo LHM, et al. combination therapy with sulfasalazine and valproic acid promotes human glioblastoma cell death through imbalance of the intracellular oxidative response[J]. Mol Neurobiol, 2018, 55(8): 6816-6833. DOI: 10.1007/s12035-018-0895-1. doi:10.1007/s12035-018-0895-1 |
[34] | Toraih EA, El-Wazir A, Abdallah HY, et al. Deregulated microRNA signature following glioblastoma irradiation[J]. Cancer Control, 2019, 26(1): 1073274819847226. DOI: 10.1177/1073274819847226. doi:10.1177/1073274819847226 |
[35] | Xu Z, Zeng X, Li M, et al. MicroRNA-383 promotes reactive oxygen species-induced autophagy via downregulating peroxiredoxin 3 in human glioma U87 cells[J]. Exp Ther Med, 2021, 21(5): 439. DOI: 10.3892/etm.2021.9870. doi:10.3892/etm.2021.9870 |
[36] | Yang W, Shen Y, Wei J, et al. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species[J]. Oncotarget, 2015, 6(26): 22006-22027. DOI: 10.18632/oncotarget.4292. doi:10.18632/oncotarget.4292pmid:26124081 |
[37] | Chang M, Qiao L, Li B, et al. Suppression of SIRT6 by miR-33a facilitates tumor growth of glioma through apoptosis and oxidative stress resistance[J]. Oncol Rep, 2017, 38(2): 1251-1258. DOI: 10.3892/or.2017.5780. doi:10.3892/or.2017.5780 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞.原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[3] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[4] | 钱晓涛, 石子宜, 胡格.Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[5] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[6] | 崔腾璐, 孙鹏飞.鼻咽低级别乳头状腺癌综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(6): 382-384. |
[7] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会.同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(4): 193-201. |
[8] | 赵永瑞, 高莹, 陈怡东, 徐建堃.基于直线加速器的分次立体定向放疗对小体积脑转移瘤的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 138-143. |
[9] | 吕璐, 孙鹏飞, 崔腾璐.子宫内膜癌颈部淋巴结转移综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(11): 701-704. |
[10] | 刘小洁, 黄俊星.NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. |
[11] | 马雪艳, 鲁历历, 孙鹏飞.免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[12] | 李志磊, 罗加林.预测局部晚期直肠癌术前同步放化疗敏感性的生物学指标[J]. 国际肿瘤学杂志, 2022, 49(9): 564-567. |
[13] | 夏玲玲, 陈永顺, 李彬, 宁婷婷, 张蔡羽天.pN+食管鳞状细胞癌患者R0切除术后放化疗与化疗的安全性及有效性比较[J]. 国际肿瘤学杂志, 2022, 49(6): 334-339. |
[14] | 杨娅, 宁晓飞, 李炳亮, 姚慧, 山长平, 吕敏.原花青素通过诱导活性氧产生介导抗SNU-1胃癌细胞株的作用机制研究[J]. 国际肿瘤学杂志, 2022, 49(5): 257-262. |
[15] | 叶倩, 凌志, 刘申香, 路国涛, 殷旭东.肌肉减少症对老年食管癌患者根治性放疗临床疗效及预后的影响[J]. 国际肿瘤学杂志, 2022, 49(4): 199-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||