国际肿瘤学杂志››2022,Vol. 49››Issue (9): 564-567.doi:10.3760/cma.j.cn371439-20220429-00110
收稿日期:
2022-04-29修回日期:
2022-05-09出版日期:
2022-09-08发布日期:
2022-10-21通讯作者:
罗加林 E-mail:luojl@zjcc.org.cn.comReceived:
2022-04-29Revised:
2022-05-09Online:
2022-09-08Published:
2022-10-21Contact:
Luo Jialin E-mail:luojl@zjcc.org.cn.com摘要:
局部晚期直肠癌术前同步放化疗后肿瘤降期明显,可提高保肛率及局部控制率,不良反应可耐受,但临床疗效个体差异大。近年来研究发现,环氧合酶-2、G蛋白偶联受体、P53结合蛋白1、纤维蛋白原/白蛋白比值、程序性细胞死亡因子4、肿瘤浸润淋巴细胞、微小RNA等生物学指标与局部晚期直肠癌新辅助治疗的敏感性相关,可预测术前同步放化疗的敏感性。
李志磊, 罗加林. 预测局部晚期直肠癌术前同步放化疗敏感性的生物学指标[J]. 国际肿瘤学杂志, 2022, 49(9): 564-567.
Li Zhilei, Luo Jialin. Biological indexes for predicting sensitivity of preoperative concurrent chemoradiotherapy for locally advanced rectal cancer[J]. Journal of International Oncology, 2022, 49(9): 564-567.
[1] | Mendis S, To YH, Tie J. Biomarkers in locally advanced rectal cancer: a review[J]. Clin Colorectal Cancer, 2022, 21(1): 36-44. DOI: 10.1016/j.clcc.2021.11.002. doi:10.1016/j.clcc.2021.11.002 |
[2] | Marin S, Pérez-Cordón L, Salvà F, et al. Cost-minimisation analysis of rectal cancer neoadjuvant chemoradiotherapy based on fluoropyrimidines (capecitabine versus 5-fluorouracil)[J]. Eur J Hosp Pharm, 2021, 28(Suppl 2): e13-e17. DOI: 10.1136/ejhpharm-2019-002156. doi:10.1136/ejhpharm-2019-002156 |
[3] | Shinto E, Omata J, Sikina A, et al. Predictive immunohistochemical features for tumour response to chemoradiotherapy in rectal cancer[J]. BJS Open, 2020, 4(2): 301-309. DOI: 10.1002/bjs5.50251. doi:10.1002/bjs5.50251pmid:32026629 |
[4] | 刘英强, 陈淅涓, 韩广森, 等. 中低位局部进展期直肠癌新辅助同步放化疗敏感性与环氧化酶-2表达的关系[J]. 中华实验外科杂志, 2018, 35(8): 1548-1550. DOI: 10.3760/cma.j.issn.1001-9030.2018.08.049. doi:10.3760/cma.j.issn.1001-9030.2018.08.049 |
[5] | Berbecka M, Forma A, Baj J, et al. A systematic review of the cyclooxygenase-2 (COX-2) expression in rectal cancer patients treated with preoperative radiotherapy or radiochemotherapy[J]. J Clin Med, 2021, 10(19): 4443. DOI: 10.3390/jcm10194443. doi:10.3390/jcm10194443 |
[6] | Fumagalli A, Oost KC, Kester L, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4): 569-578. e7. DOI: 10.1016/j.stem.2020.02.008. doi:S1934-5909(20)30061-8pmid:32169167 |
[7] | 刘英强, 陈淅涓, 韩广森, 等. 中低位局部进展期直肠癌新辅助同步放化疗前后G蛋白耦联受体蛋白的表达变化及其临床意义[J]. 中华实验外科杂志, 2019, 36(6): 1110-1113. DOI: 10.3760/cma.j.issn.1001-9030.2019.06.040. doi:10.3760/cma.j.issn.1001-9030.2019.06.040 |
[8] | Morsy H, Gaballah A, Samir M, et al. LGR5, HES1 and ATOH1 in young rectal cancer patients in Egyptian[J]. Asian Pac J Cancer Prev, 2021, 22(9): 2819-2830. DOI: 10.31557/APJCP.2021.22.9.2819. doi:10.31557/APJCP.2021.22.9.2819 |
[9] | Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, et al. 53BP1: a key player of DNA damage response with critical functions in cancer[J]. DNA Repair (Amst), 2019, 73: 110-119. DOI: 10.1016/j.dnarep.2018.11.008. doi:10.1016/j.dnarep.2018.11.008 |
[10] | Tang M, Feng X, Pei G, et al. FOXK1 participates in DNA damage response by controlling 53BP1 function[J]. Cell Rep, 2020, 32(6): 108018. DOI: 10.1016/j.celrep.2020.108018. doi:10.1016/j.celrep.2020.108018 |
[11] | 王燕, 张洛, 潘在用. P53蛋白表达与直肠癌术前同步放化疗敏感性研究[J]. 中华普通外科学文献(电子版), 2021, 15(2): 111-115. DOI: 10.3877/cma.j.issn.1674-0793.2021.02.007. doi:10.3877/cma.j.issn.1674-0793.2021.02.007 |
[12] | Huang A, Xiao Y, Peng C, et al. 53BP1 expression and immunoscore are associated with the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Strahlenther Onkol, 2020, 196(5): 465-473. DOI: 10.1007/s00066-019-01559-x. doi:10.1007/s00066-019-01559-xpmid:31828392 |
[13] | Tian G, Li G, Guan L, et al. Pretreatment albumin-to-alkaline phosphatase ratio as a prognostic indicator in solid cancers: a meta-analysis with trial sequential analysis[J]. Int J Surg, 2020, 81: 66-73. DOI: 10.1016/j.ijsu.2020.07.024. doi:S1743-9191(20)30559-8pmid:32745716 |
[14] | Li B, Deng H, Zhou Z, et al. The prognostic value of the fibrinogen to pre-albumin ratio in malignant tumors of the digestive system: a systematic review and meta-analysis[J]. Cancer Cell Int, 2022, 22(1): 22. DOI: 10.1186/s12935-022-02445-w. doi:10.1186/s12935-022-02445-wpmid:35033080 |
[15] | Lu S, Liu Z, Zhou X, et al. Preoperative fibrinogen-albumin ratio index (FARI) is a reliable prognosis and chemoradiotherapy sensitivity predictor in locally advanced rectal cancer patients under-going radical surgery following neoadjuvant chemoradiotherapy[J]. Cancer Manag Res, 2020, 12: 8555-8568. DOI: 10.2147/CMAR.S273065. doi:10.2147/CMAR.S273065 |
[16] | Li H, Wang H, Shao S, et al. Pretreatment albumin-to-fibrinogen ratio independently predicts chemotherapy response and prognosis in patients with locally advanced rectal cancer undergoing total mesorectal excision after neoadjuvant chemoradiotherapy[J]. Onco Targets Ther, 2020, 13: 13121-13130. DOI: 10.2147/OTT.S288265. doi:10.2147/OTT.S288265 |
[17] | Wang Y, Gao C, Zhou K, et al. MicroRNA-532-5p-programmed cell death protein 4 (PDCD4) axis regulates angiotensin Ⅱ-induced human umbilical vein endothelial cell apoptosis and proliferation[J]. Microvasc Res, 2021, 138: 104195. DOI: 10.1016/j.mvr.2021.104195. doi:10.1016/j.mvr.2021.104195 |
[18] | Lai CY, Yeh KY, Liu BF, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish[J]. Cancers (Basel), 2021, 13(21): 5565. DOI: 10.3390/cancers13215565. doi:10.3390/cancers13215565 |
[19] | Dou X, Wang RB, Meng XJ, et al. PDCD4 as a predictor of sensitivity to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients[J]. Asian Pac J Cancer Prev, 2014, 15(2): 825-830. DOI: 10.7314/apjcp.2014.15.2.825. doi:10.7314/apjcp.2014.15.2.825 |
[20] | Akiyoshi T, Gotoh O, Tanaka N, et al. T-cell complexity and density are associated with sensitivity to neoadjuvant chemoradiotherapy in patients with rectal cancer[J]. Cancer Immunol Immunother, 2021, 70(2): 509-518. DOI: 10.1007/s00262-020-02705-6. doi:10.1007/s00262-020-02705-6 |
[21] | Chen TW, Huang KC, Chiang SF, et al. Prognostic relevance of programmed cell death-ligand 1 expression and CD8+TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy[J]. J Cancer Res Clin Oncol, 2019, 145(4): 1043-1053. DOI: 10.1007/s00432-019-02874-7. doi:10.1007/s00432-019-02874-7 |
[22] | Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy[J]. Int J Mol Sci, 2019, 20(4): 959. DOI: 10.3390/ijms20040959. doi:10.3390/ijms20040959 |
[23] | Hack SP, Zhu AX, Wang Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities[J]. Front Immunol, 2020, 11: 598877. DOI: 10.3389/fimmu.2020.598877. doi:10.3389/fimmu.2020.598877 |
[24] | Huang CY, Chiang SF, Ke TW, et al. Clinical significance of programmed death 1 ligand-1 (CD274/PD-L1) and intra-tumoral CD8+T-cell infiltration in stage Ⅱ- Ⅲ colorectal cancer[J]. Sci Rep, 2018, 8(1): 15658. DOI: 10.1038/s41598-018-33927-5. doi:10.1038/s41598-018-33927-5 |
[25] | Cui Y, Lyu X, Ding L, et al. Global miRNA dosage control of embryonic germ layer specification[J]. Nature, 2021, 593(7860): 602-606. DOI: 10.1038/s41586-021-03524-0. doi:10.1038/s41586-021-03524-0 |
[26] | Ghafouri-Fard S, Esmaeili M, Taheri M. Expression of non-coding RNAs in hematological malignancies[J]. Eur J Pharmacol, 2020, 875: 172976. DOI: 10.1016/j.ejphar.2020.172976. doi:10.1016/j.ejphar.2020.172976 |
[27] | Campayo M, Navarro A, Benítez JC, et al. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer[J]. PLoS One, 2018, 13(11): e0206542. DOI: 10.1371/journal.pone.0206542. doi:10.1371/journal.pone.0206542 |
[28] | Machackova T, Trachtova K, Prochazka V, et al. Tumor microRNAs identified by small RNA sequencing as potential response predictors in locally advanced rectal cancer patients treated with neoadjuvant chemoradiotherapy[J]. Cancer Genomics Proteomics, 2020, 17(3): 249-257. DOI: 10.21873/cgp.20185. doi:10.21873/cgp.20185 |
[29] | Kaneko K, Kawai K, Kazama S, et al. Clinical significance of mucinous components in rectal cancer after preoperative chemoradiotherapy[J]. Surg Today, 2017, 47(6): 697-704. DOI: 10.1007/s00595-016-1419-0. doi:10.1007/s00595-016-1419-0pmid:27659290 |
[30] | Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1): 17-26. e6. DOI: 10.1016/j.stem.2019.10.010. doi:S1934-5909(19)30431-Xpmid:31761724 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[3] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[4] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[5] | 钱晓涛, 石子宜, 胡格.Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[6] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[7] | 刘德宝, 孙子雯, 鲁守堂, 徐海东.ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[8] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[9] | 崔腾璐, 孙鹏飞.鼻咽低级别乳头状腺癌综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(6): 382-384. |
[10] | 陈卓, 陶俊, 陈琳, 柯晶.外周血miR-194联合粪便miR-143检测对结直肠癌临床筛查的价值[J]. 国际肿瘤学杂志, 2023, 50(5): 268-273. |
[11] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会.同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(4): 193-201. |
[12] | 曾利武, 杜雨强, 张鹏, 陶凯雄.直肠癌侧方淋巴结转移的影像评估进展[J]. 国际肿瘤学杂志, 2023, 50(4): 248-251. |
[13] | 赵永瑞, 高莹, 陈怡东, 徐建堃.基于直线加速器的分次立体定向放疗对小体积脑转移瘤的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 138-143. |
[14] | 黄镇, 张蔡羽天, 柯少波, 石薇, 赵文思, 陈永顺.结直肠癌患者术后预后模型的构建[J]. 国际肿瘤学杂志, 2023, 50(3): 157-163. |
[15] | 徐良富, 李袁飞.MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||