国际肿瘤学杂志››2024,Vol. 51››Issue (4): 235-238.doi:10.3760/cma.j.cn371439-20230925-00039
收稿日期:
2023-09-25修回日期:
2024-02-23出版日期:
2024-04-08发布日期:
2024-05-10通讯作者:
郭贵龙,Email:
Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong()
Received:
2023-09-25Revised:
2024-02-23Online:
2024-04-08Published:
2024-05-10Contact:
Guo Guilong, Email:
摘要:
乳腺癌靶向治疗可以显著改善乳腺癌患者的预后、提高生命质量、延长生存期,但是原发性耐药或获得性耐药的出现最终会导致疾病进展、复发或转移。肿瘤微环境(TME)是乳腺癌细胞赖以生存的复杂环境。目前已知乳腺癌细胞和TME是一个功能性整体,它们之间的串扰在乳腺癌进展以及靶向治疗耐药性中起着关键作用。因此明确TME异常对于揭示靶向治疗耐药的潜在机制以及制定针对靶向治疗耐药恶性肿瘤的治疗策略十分重要。
杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238.
Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238.
[1] | Lei SY, Zheng RS, Zhang SW, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020[J].Cancer Commun (Lond),2021,41(11): 1183-1194. DOI:10.1002/cac2.12207. |
[2] | 高晓敏, 郭旭, 王玲, 等. 肿瘤微环境调控乳腺癌HER2靶向药物耐药机制及逆转策略[J].中国癌症防治杂志,2023,15(5): 581-586. DOI:10.3969/j.issn.1674-5671.2023.05.18. |
[3] | Amer HT, Stein U, El Tayebi HM. The monocyte, a maestro in the tumor microenvironment (TME) of breast cancer[J].Cancers (Basel),2022,14(21): 5460. DOI:10.3390/cancers14215460. |
[4] | Liu Y, Ji XM, Kang NN, et al. Tumor necrosis factor α inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer[J].Cell Death Dis,2020,11(11): 993. DOI:10.1038/s41419-020-03161-x. pmid:33214550 |
[5] | Qiao JH, Chen YB, Mi YJ, et al. Macrophages confer resistance to BET inhibition in triple-negative breast cancer by upregulating IKBKE[J].Biochem Pharmacol,2020,180: 114126. DOI:10.1016/ j.bcp.2020.114126. |
[6] | Mehta AK, Cheney EM, Hartl CA, et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer[J].Nat Cancer,2021,2(1): 66-82. DOI:10.1038/s43018-020-00148-7. |
[7] | You D, Kim H, Jeong Y, et al. Tumorigenicity of EGFR- and/or HER2-positive breast cancers is mediated by recruitment of tumor-associated macrophages[J].Int J Mol Sci,2023,24(2): 1443. DOI:10.3390/ijms24021443. |
[8] | Ahmed S, Mohamed HT, El-Husseiny N, et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling[J].Biochim Biophys Acta Mol Cell Res,2021,1868(6):118995. DOI:10.1016/j.bbamcr.2021.118995. |
[9] | Hu XC, Liu YW, Zhang XS, et al. The anti-B7-H4 checkpoint synergizes trastuzumab treatment to promote phagocytosis and eradicate breast cancer[J].Neoplasia,2020,22(11): 539-553. DOI:10.1016/j.neo.2020.08.007. pmid:32966956 |
[10] | Salemme V, Centonze G, Avalle L, et al. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity[J].Front Oncol,2023,13: 37265795. DOI:10.3389/fonc.2023.1170264. |
[11] | Liu X, Lu Y, Huang J, et al. CD16+fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition[J].Cancer Cell,2022,40(11): 1341-1357. DOI:10.1016/j.ccell.2022.10.015. |
[12] | Du RX, Zhang XM, Lu XY, et al. PDPN positive CAFs contribute to HER2 positive breast cancer resistance to trastuzumab by inhibiting antibody-dependent NK cell-mediated cytotoxicity[J].Drug Resist Updat,2023,68: 100947. DOI:10.1016/j.drup.2023.100947. |
[13] | Watson SS, Dane M, Chin K, et al. Microenvironment-mediated mechanisms of resistance to HER2 inhibitors differ between HER2+breast cancer subtypes[J].Cell Syst,2018,6(3): 329-342.e6. DOI:10.1016/j.cels.2018.02.001. |
[14] | Novotny CJ, Pollari S, Park JH, et al. Overcoming resistance to HER2 inhibitors through state-specific kinase binding[J].Nat Chem Biol,2016,12(11): 923-930. DOI:10.1038/nchembio.2171. pmid:27595329 |
[15] | Fernández-Nogueira P, Mancino M, Fuster G, et al. Tumor-associated fibroblasts promote HER2-targeted therapy resistance through FGFR2 activation[J].Clin Cancer Res,2020,26(6): 1432-1448. DOI:10.1158/1078-0432.CCR-19-0353. pmid:31699826 |
[16] | Zou YT, Zheng SQ, Xie XH, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer[J].Nat Commun,2022,13(1): 2672. DOI:10.1038/s41467-022-30217-7. pmid:35562334 |
[17] | Zervantonakis IK, Poskus MD, Scott AL, et al. Fibroblast-tumor cell signaling limits HER2 kinase therapy response via activation of mTOR and antiapoptotic pathways[J].Proc Natl Acad Sci U S A,2020,117(28): 16500-16508. DOI:10.1073/pnas.2000648117. |
[18] | Elshazly AM, Gewirtz DA. An overview of resistance to human epidermal growth factor receptor 2 (HER2) targeted therapies in breast cancer[J].Cancer Drug Resist,2022,5(2): 472-486. DOI:10.20517/cdr.2022.09. pmid:35800378 |
[19] | Zazo S, González-Alonso P, Martín-Aparicio E, et al. Autocrine CCL5 effect mediates trastuzumab resistance by ERK pathway activation in HER2-positive breast cancer[J].Mol Cancer Ther,2020,19(8): 1696-1707. DOI:10.1158/1535-7163.MCT-19-1172. pmid:32404410 |
[20] | Zheng GX, Guo ZY, Li WM, et al. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER2-positive breast cancer resistance to trastuzumab[J].Signal Transduct Target Ther,2021,6(1): 236. DOI:10.1038/s41392-021-00629-w. |
[21] | 曹长青.增强ADCC效应提高曲妥珠单抗治疗HER2阳性乳腺癌疗效的相关研究[D]. 西安: 中国人民解放军空军军医大学,2023. DOI:10.27002/d.cnki.gsjyu.2023.000305. |
[22] | Liu SY, Li SQ, Wang BL, et al. Cooperative effect of oncogenic Met and PIK3CA in an HGF-dominant environment in breast cancer[J].Mol Cancer Ther,2019,18(2): 399-412. DOI:10. 1158/1535-7163.MCT-18-0710. |
[23] | Singh S, Lamichhane A, Rafsanjani Nejad P, et al. Therapeutic targeting of stromal-tumor HGF-MET signaling in an organotypic triple-negative breast tumor model[J].Mol Cancer Res,2022,20(7): 1166-1177. DOI:10.1158/1541-7786.MCR-21-0317. |
[24] | Mortezaee K, Majidpoor J. The impact of hypoxia on extracellular vesicle secretome profile of cancer[J].Med Oncol,2023,40(5): 128. DOI:10.1007/s12032-023-01995-x. pmid:36964452 |
[25] | Wu XL, Ren Y, Yao R, et al. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN axis[J].Front Oncol,2021,11: 639961. DOI:10.3389/fonc.2021.639961. |
[26] | Zhang HL, Yan CX, Wang YH. Exosome-mediated transfer of circHIPK3 promotes trastuzumab chemoresistance in breast cancer[J].J Drug Target,2021,29(9): 1004-1015. DOI:10.1080/1061186X.2021.1906882. |
[27] | Chen MK, Du Y, Sun L, et al. H2O2induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism[J].J Biol Chem,2019,294(21): 8516-8528. DOI:10.1074/jbc.RA118.005953. |
[28] | Chu YY, Yam C, Chen MK, et al. Blocking c-Met and EGFR reverses acquired resistance of PARP inhibitors in triple-negative breast cancer[J].Am J Cancer Res,2020,10(2): 648-661. |
[29] | Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy[J].Front Mol Biosci,2019,6: 160. DOI:10.3389/fmolb.2019.00160. pmid:32118030 |
[30] | Neophytou C, Boutsikos P, Papageorgis P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis[J].Front Oncol,2018,8: 31. DOI:10.3389/fonc.2018.00031. pmid:29520340 |
[31] | Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2+breast cancer[J].Cancer Res,2017,77(12): 3280-3292. DOI:10.1158/0008-5472.CAN-16-2808. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||