国际肿瘤学杂志››2024,Vol. 51››Issue (6): 359-363.doi:10.3760/cma.j.cn371439-20240119-00062
收稿日期:
2024-01-19修回日期:
2024-02-06出版日期:
2024-06-08发布日期:
2024-06-28通讯作者:
吴刚,Email:
基金资助:
Received:
2024-01-19Revised:
2024-02-06Online:
2024-06-08Published:
2024-06-28Contact:
Wu Gang, Email:
Supported by:
摘要:
鼻咽癌是一种与EB病毒(EBV)感染密切相关的癌种,并伴有癌巢周围高水平的免疫细胞浸润。EBV阳性鼻咽癌的肿瘤免疫微环境(TIME)中存在两种功能相反的免疫细胞,但由于EBV表面膜蛋白和γ干扰素的作用以及程序性死亡受体1的高表达,TIME表现为免疫抑制作用。免疫疗法利用TIME免疫抑制特性改变其中的免疫应答水平,从而抑制鼻咽癌的进展。EBV相关鼻咽癌的免疫治疗方法包括免疫检查点抑制剂、细胞免疫疗法、肿瘤疫苗与溶瘤病毒免疫疗法。进一步探讨EBV与TIME的关系以及EBV在鼻咽癌免疫治疗策略中的作用,可为EBV阳性鼻咽癌的精准免疫治疗提供依据。
许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363.
Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363.
[1] | Chang ET, Ye W, Ernberg I, et al. A novel causal model for nasopharyngeal carcinoma[J].Cancer Causes Control,2022,33(7): 1013-1018. DOI:10.1007/s10552-022-01582-x. |
[2] | Ding X, Zhang WJ, You R, et al. Camrelizumab plus apatinib in patients with recurrent or metastatic nasopharyngeal carcinoma: an open-label, single-arm, phase Ⅱ study[J].J Clin Oncol,2023,41(14): 2571-2582. DOI:10.1200/JCO.22.01450. |
[3] | Jin SZ, Li RY, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J].Cell Res,2020,30(11): 950-965. DOI:10.1038/s41422-020-00402-8. |
[4] | Gong LQ, Kwong DLW, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J].Nat Commun,2021,12(1): 1540. DOI:10.1038/s41467-021-21795-z. pmid:33750785 |
[5] | Chen HW, Duan XB, Deng XH, et al. EBV-upregulated B7-H3 inhibits NK cell-mediated antitumor function and contributes to nasopharyngeal carcinoma progression[J].Cancer Immunol Res,2023,11(6): 830-846. DOI:10.1158/2326-6066.CIR-22-0374. |
[6] | Orange JS. How I manage natural killer cell deficiency[J].J Clin Immunol,2020,40(1): 13-23. DOI:10.1007/s10875-019-00711-7. pmid:31754930 |
[7] | Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host[J].Front Microbiol,2022,13: 955603. DOI:10.3389/fmicb.2022.955603. |
[8] | Wang ZH, Pei XF, Zhu ZQ, et al. CD47 overexpression is associated with Epstein-Barr virus infection and poor prognosis in patients with nasopharyngeal carcinoma[J].Onco Targets Ther,2020,13: 3325-3334. DOI:10.2147/OTT.S245023. |
[9] | von Roemeling CA, Wang YF, Qie YQ, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J].Nat Commun,2020,11(1): 1508. DOI:10.1038/s41467-020-15129-8. pmid:32198351 |
[10] | Sun W, Chen L, Tang J, et al. Targeting EZH2 depletes LMP1-induced activated regulatory T cells enhancing antitumor immunity in nasopharyngeal carcinoma[J].J Cancer Res Ther,2020,16(2): 309-319. DOI:10.4103/jcrt.JCRT_986_19. pmid:32474518 |
[11] | Liu Y, Lui KS, Ye ZD, et al. EBV latent membrane protein 1 augments γδ T cell cytotoxicity against nasopharyngeal carcinoma by induction of butyrophilin molecules[J].Theranostics,2023,13(2): 458-471. DOI:10.7150/thno.78395. pmid:36632221 |
[12] | Chen HW, Zhang X, Zhang SS, et al. T cell epitope screening of Epstein-Barr virus fusion protein gB[J].J Virol,2021,95(10): JVI.00021-JVI.00081. DOI:10.1128/JVI.00081-21. |
[13] | Kase K, Kondo S, Wakisaka N, et al. Epstein-Barr virus LMP1 induces soluble PD-L1 in nasopharyngeal carcinoma[J].Microorganisms,2021,9(3): 603. DOI:10.3390/microorganisms9030603. |
[14] | Wang J, Ge JS, Wang YA, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1[J].Nat Commun,2022,13(1): 866. DOI:10.1038/s41467-022-28479-2. pmid:35165282 |
[15] | Caudell JJ, Gillison ML, Maghami E, et al. NCCN guidelines®insights: head and neck cancers, version 1.2022[J].J Natl Compr Canc Netw,2022,20(3): 224-234. DOI:10.6004/jnccn.2022.0016. |
[16] | Han JQ, Zeng N, Tian K, et al. First-line immunotherapy combinations for recurrent or metastatic nasopharyngeal carcinoma: an updated network meta-analysis and cost-effectiveness analysis[J].Head Neck,2023,45(9): 2246-2258. DOI:10.1002/hed.27452. |
[17] | Mai HQ, Chen QY, Chen DP, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial[J].Nat Med,2021,27(9): 1536-1543. DOI:10.1038/s41591-021-01444-0. |
[18] | Yang YP, Qu S, Li JG, et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial[J].Lancet Oncol,2021, 22(8): 1162-1174. DOI:10.1016/S1470-2045(21)00302-8. |
[19] | Yang YP, Pan AA, Wang H, et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309)[J].Cancer Cell,2023,41(6): 1061-1072.e4. DOI:10.1016/j.ccell.2023.04.014. pmid:37207654 |
[20] | Wang FH, Wei XL, Feng JF, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase Ⅱ clinical trial (POLARIS-02)[J].J Clin Oncol,2021,39(7): 704-712. DOI:10.1200/JCO.20.02712. pmid:33492986 |
[21] | Jiang YF, Fang T, Lu N, et al. Anti-PD1 rechallenge in combination with anti-angiogenesis or anti-EGFR treatment beyond progression in recurrent/metastatic nasopharyngeal carcinoma patients[J].Crit Rev Oncol Hematol,2023,190: 104113. DOI:10.1016/j.critrevonc.2023.104113. |
[22] | Lim DWT, Kao HF, Suteja L, et al. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma[J].Nat Commun,2023,14(1): 2781. DOI:10.1038/s41467-023-38407-7. |
[23] | Xiang Y, Tian MM, Huang J, et al. LMP2-mRNA lipid nanoparticle sensitizes EBV-related tumors to anti-PD-1 therapy by rever-sing T cell exhaustion[J].J Nanobiotechnology,2023,21(1): 324. DOI:10.1186/s12951-023-02069-w. |
[24] | Li WZ, Lv SH, Liu GY, et al. Epstein-Barr virus DNA seropositi-vity links distinct tumoral heterogeneity and immune landscape in nasopharyngeal carcinoma[J].Front Immunol,2023,14: 1124066. DOI:10.3389/fimmu.2023.1124066. |
[25] | Mahadeo KM, Baiocchi R, Beitinjaneh A, et al. Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant reci-pients with Epstein-Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial[J].Lancet Oncol,2024, 25(3): 376-387. DOI:10.1016/S1470-2045(23)00649-6. |
[26] | Jia QZ, Peng L, Chen G, et al. TCR-T cells armored with immune checkpoint blockade in EBV-positive nasopharyngeal carcinoma: the first-in-human phase 1/2 trial[J].J Clin Oncol,2023,41(16): 6047. DOI:10.1200/JCO.2023.41.16_suppl.6047. |
[27] | Wang CW, Chen JW, Li JY, et al. An EBV-related CD4 TCR immunotherapy inhibits tumor growth in an HLA-DP5+nasopha-ryngeal cancer mouse model[J].J Clin Invest,2024,134(8): e172092. DOI:10.1172/JCI172092. |
[28] | Nickles E, Dharmadhikari B, Yating L, et al. Dendritic cell therapy with CD137L-DC-EBV-VAX in locally recurrent or metastatic nasopharyngeal carcinoma is safe and confers clinical benefit[J].Cancer Immunol Immunother,2022,71(6): 1531-1543. DOI:10.1007/s00262-021-03075-3. |
[29] | Zhu XZ, Perales-Puchalt A, Wojtak K, et al. DNA immunotherapy targeting BARF1 induces potent anti-tumor responses against Epstein-Barr-virus-associated carcinomas[J].Mol Ther Oncolytics,2022,24: 218-229. DOI:10.1016/j.omto.2021.12.017. |
[30] | Guo MR, Duan X, Peng XC, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma[J].Nano Res,2023,16(4): 5357-5367. DOI:10.1007/s12274-022-5254-x. |
[31] | Zeng Y, Si YF, Lan GP, et al. LMP2-DC vaccine elicits specific EBV-LMP2 response to effectively improve immunotherapy in patients with nasopharyngeal cancer[J].Biomed Environ Sci,2020,33(11): 849-856. DOI:10.3967/bes2020.115. pmid:33771238 |
[32] | Rühl J, Citterio C, Engelmann C, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas[J].J Clin Invest,2019,129(5): 2071-2087. DOI:10.1172/JCI125364. pmid:31042161 |
[33] | Dummer R, Gyorki DE, Hyngstrom JR, et al. Final 5-year follow-up results evaluating neoadjuvant talimogene laherparepvec plus surgery in advanced melanoma: a randomized clinical trial[J].JAMA Oncol,2023,9(10): 1457-1459. DOI:10.1001/jamaoncol.2023.2789. pmid:37561473 |
[1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[2] | 顾芳萌, 徐晨阳, 雷大鹏.人工智能辅助电子喉镜检查在喉癌及喉癌前病变诊治中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 303-307. |
[3] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[4] | 崔腾璐, 孙鹏飞.鼻咽低级别乳头状腺癌综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(6): 382-384. |
[5] | 顾安琴, 龙金华, 金风.鼻咽癌免疫治疗的临床研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 299-303. |
[6] | 马鹏程, 陈愉.原发性肺淋巴上皮瘤样癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 174-178. |
[7] | 黄华玉, 龚虹云, 宋启斌.胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[8] | 张雨潇, 张连生, 李莉娟.新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[9] | 张碧霞, 丁江华.EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[10] | 左小平, 刘晓川, 吴西强, 李周, 夏天, 刘国凤.老年早期肺癌患者经胸腔镜肺切除术后心律失常发生的危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(12): 711-716. |
[11] | 李佳宜, 王跃, 尚兰兰, 徐兴, 赵岩.人工智能技术在胃癌诊断与治疗中的实践与展望[J]. 国际肿瘤学杂志, 2023, 50(11): 677-682. |
[12] | 徐航程, 吴云, 王佳玉.HER2低表达乳腺癌研究进展[J]. 国际肿瘤学杂志, 2022, 49(9): 513-516. |
[13] | 杨莎, 杨晓华, 王苏华, 薛晓燕, 徐俊.老年肺癌胸腔镜手术后下肢深静脉血栓的危险因素分析及预测模型的建立和验证[J]. 国际肿瘤学杂志, 2022, 49(9): 532-536. |
[14] | 陈文莉, 倪志华, 陈红宇, 畅立圣, 范德生, 刘立伟, 丁青薇.免疫联合靶向治疗恶性腹膜间皮瘤1例[J]. 国际肿瘤学杂志, 2022, 49(8): 509-512. |
[15] | 张慎锋, 刘杰, 祝情情, 阚士峰, 孙晋军, 王涛, 邱梅清.长春瑞滨节拍化疗治疗一线失败后驱动基因阴性晚期老年非小细胞肺癌的疗效和安全性[J]. 国际肿瘤学杂志, 2022, 49(7): 441-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||