国际肿瘤学杂志››2023,Vol. 50››Issue (2): 122-125.doi:10.3760/cma.j.cn371439-20221024-00025
收稿日期:
2022-10-24修回日期:
2022-12-12出版日期:
2023-02-08发布日期:
2023-03-22通讯作者:
张连生,Email:
基金资助:
Zhang Yuxiao, Zhang Liansheng(), Li Lijuan(
)
Received:
2022-10-24Revised:
2022-12-12Online:
2023-02-08Published:
2023-03-22Contact:
Zhang Liansheng,Email:
Supported by:
摘要:
T细胞免疫球蛋白和免疫受体酪氨酸抑制性基序结构域(TIGIT)是近年新兴的免疫检查点蛋白,研究表明TIGIT能够使免疫细胞功能障碍,减弱抗肿瘤效应,导致肿瘤免疫耐受与免疫逃逸。通过阻断TIGIT可以逆转免疫细胞衰竭,发挥抗肿瘤效应,有望成为新一代多发性骨髓瘤治疗靶点。
张雨潇, 张连生, 李莉娟. 新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125.
Zhang Yuxiao, Zhang Liansheng, Li Lijuan. Research status and application prospect of a novel immune checkpoint TIGIT in the immunotherapy of multiple myeloma[J]. Journal of International Oncology, 2023, 50(2): 122-125.
[1] | 中国多发性骨髓瘤诊治指南不断完善[J]. 中华医学信息导报, 2022, 37(10): 4. DOI: 10.3760/cma.j.issn.1000-8039.2022.10.136. doi:10.3760/cma.j.issn.1000-8039.2022.10.136 |
[2] | 郭红艳, 李莉娟, 黄紫莹, 等. 多发性骨髓瘤的免疫治疗研究现状[J]. 中国临床研究, 2021, 34(5): 676-680. DOI: 10.13429/j.cnki.cjcr.2021.05.024. doi:10.13429/j.cnki.cjcr.2021.05.024 |
[3] | 王约拿, 刘佳, 李莉娟, 等. TIGIT对血液淋巴系统恶性肿瘤的免疫调节作用[J]. 中国临床研究, 2022, 35(6): 854-857. DOI: 10.13429/j.cnki.cjcr.2022.06.026. doi:10.13429/j.cnki.cjcr.2022.06.026 |
[4] | Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune checkpoint inhibitors in cancer therapy[J]. Curr Oncol, 2022, 29(5): 3044-3060. DOI: 10.3390/curroncol29050247. doi:10.3390/curroncol29050247pmid:35621637 |
[5] | Shi AP, Tang XY, Xiong YL, et al. Immune checkpoint LAG3 and its ligand FGL1 in cancer[J]. Front Immunol, 2021, 12: 785091. DOI: 10.3389/fimmu.2021.785091. doi:10.3389/fimmu.2021.785091 |
[6] | Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000957. DOI: 10.1136/jitc-2020-000957. doi:10.1136/jitc-2020-000957 |
[7] | Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 255. DOI: 10.1186/s13046-019-1259-z. doi:10.1186/s13046-019-1259-z |
[8] | 刘珊, 施怡玢, 尚晋, 等. TIGIT信号途径介导多发性骨髓瘤免疫逃逸的研究进展[J]. 现代免疫学, 2021, 41(6): 529-532. |
[9] | Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside[J]. Cancer Immunol Immunother, 2018, 67(11): 1659-1667. DOI: 10.1007/s00262-018-2246-5. doi:10.1007/s00262-018-2246-5pmid:30232519 |
[10] | 王立韬, 白丽. 用于肿瘤治疗的免疫检查点及其抑制剂研究进展[J]. 细胞与分子免疫学杂志, 2021, 37(7): 663-670. DOI: 10.13423/j.cnki.cjcmi.009232. doi:10.13423/j.cnki.cjcmi.009232 |
[11] | Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for immuno-therapy of cancer: update on clinical development[J]. Biomedicines, 2021, 9(9): 1277. DOI: 10.3390/biomedicines 9091277. doi:10.3390/biomedicines 9091277 |
[12] | Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy[J]. J Immunother Cancer, 2022, 10(4): e004711. DOI: 10.1136/jitc-2022-004711. doi:10.1136/jitc-2022-004711 |
[13] | 耿素霞, 杜欣. 2020年血液肿瘤靶向免疫检查点治疗研究进展[J]. 循证医学, 2021, 21(1): 45-49. DOI: 10.12019/j.issn.1671-5144.2021.01.012. doi:10.12019/j.issn.1671-5144.2021.01.012 |
[14] | Harjunpää H, Guillerey C. TIGIT as an emerging immune check-point[J]. Clin Exp Immunol, 2020, 200(2): 108-119. DOI: 10.1111/cei.13407. doi:10.1111/cei.13407pmid:31828774 |
[15] | Jeong BS, Nam H, Lee J, et al. Structural and functional charac-terization of a monoclonal antibody blocking TIGIT[J]. MAbs, 2022, 14(1): 2013750. DOI: 10.1080/19420862.2021.2013750. doi:10.1080/19420862.2021.2013750 |
[16] | Stanietsky N, Rovis TL, Glasner A, et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR[J]. Eur J Immunol, 2013, 43(8): 2138-2150. DOI: 10.1002/eji.201243072. doi:10.1002/eji.201243072pmid:23677581 |
[17] | Holder KA, Burt K, Grant MD. TIGIT blockade enhances NK cell activity against autologous HIV-1-infected CD4+ T cells[J]. Clin Transl Immunology, 2021, 10(10): e1348. DOI: 10.1002/cti2.1348. doi:10.1002/cti2.1348 |
[18] | Sarhan D, Cichocki F, Zhang B, et al. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells[J]. Cancer Res, 2016, 76(19): 5696-5706. DOI: 10.1158/0008-5472.CAN-16-0839. doi:10.1158/0008-5472.CAN-16-0839pmid:27503932 |
[19] | Liu S, Zhang H, Li M, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells[J]. Cell Death Differ, 2013, 20(3): 456-464. DOI: 10.1038/cdd.2012.141. doi:10.1038/cdd.2012.141pmid:23154388 |
[20] | Yeo J, Ko M, Lee DH, et al. TIGIT/CD226 axis regulates anti-tumor immunity[J]. Pharmaceuticals (Basel), 2021, 14(3): 200. DOI: 10.3390/ph14030200. doi:10.3390/ph14030200 |
[21] | Kumar S. Natural killer cell cytotoxicity and its regulation by inhi-bitory receptors[J]. Immunology, 2018, 154(3): 383-393. DOI: 10.1111/imm.12921. doi:10.1111/imm.12921 |
[22] | Xu L, Liu L, Yao D, et al. PD-1 and TIGIT are highly co-expressed on CD8+T cells in AML patient bone marrow[J]. Front Oncol, 2021, 11: 686156. DOI: 10.3389/fonc.2021.686156. doi:10.3389/fonc.2021.686156 |
[23] | Minnie SA, Kuns RD, Gartlan KH, et al. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade[J]. Blood, 2018, 132(16): 1675-1688. DOI: 10.1182/blood-2018-01-825240. doi:10.1182/blood-2018-01-825240pmid:30154111 |
[24] | Ramsbottom KM, Hawkins ED, Shimoni R, et al. Cutting edge: DNAX accessory molecule 1-deficient CD8+T cells display immunological synapse defects that impair antitumor immunity[J]. J Immunol, 2014, 192(2): 553-557. DOI: 10.4049/jimmunol.1302197. doi:10.4049/jimmunol.1302197pmid:24337740 |
[25] | Jin HS, Ko M, Choi DS, et al. CD226hiCD8+T cells are a pre-requisite for anti-TIGIT immunotherapy[J]. Cancer Immunol Res, 2020, 8(7): 912-925. DOI: 10.1158/2326-6066.CIR-19-0877. doi:10.1158/2326-6066.CIR-19-0877 |
[26] | Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses[J]. Immunity, 2014, 40(4): 569-581. DOI: 10.1016/j.immuni.2014.02.012. doi:10.1016/j.immuni.2014.02.012pmid:24745333 |
[27] | Qin S, Xu L, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155. DOI: 10.1186/s12943-019-1091-2. doi:10.1186/s12943-019-1091-2pmid:31690319 |
[28] | Guillerey C, Harjunpää H, Carrié N, et al. TIGIT immune check-point blockade restores CD8+T-cell immunity against multiple myeloma[J]. Blood, 2018, 132(16): 1689-1694. DOI: 10.1182/blood-2018-01-825265. doi:10.1182/blood-2018-01-825265pmid:29986909 |
[29] | 卢惠, 王华芳. 免疫检查点分子TIGIT在血液恶性肿瘤中的研究进展[J]. 中国实验血液学杂志, 2021, 29(3): 993-997. DOI: 10.19746/j.cnki.issn1009-2137.2021.03.054. doi:10.19746/j.cnki.issn1009-2137.2021.03.054 |
[30] | Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition[J]. Front Immunol, 2020, 11: 167. DOI: 10.3389/fimmu.2020.00167. doi:10.3389/fimmu.2020.00167pmid:32117298 |
[31] | Lozano E, Mena MP, Díaz T, et al. Nectin-2 expression on malignant plasma cells is associated with better response to TIGIT blockade in multiple myeloma[J]. Clin Cancer Res, 2020, 26(17): 4688-4698. DOI: 10.1158/1078-0432.CCR-19-3673. doi:10.1158/1078-0432.CCR-19-3673pmid:32513837 |
[32] | Pazina T, MacFarlane AW 4th, Bernabei L, et al. Alterations of NK cell phenotype in the disease course of multiple myeloma[J]. Cancers (Basel), 2021, 13(2): 226. DOI: 10.3390/cancers13020226. doi:10.3390/cancers13020226 |
[33] | Ge Z, Peppelenbosch MP, Sprengers D, et al. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer[J]. Front Immunol, 2021, 12: 699895. DOI: 10.3389/fimmu.2021.699895. doi:10.3389/fimmu.2021.699895 |
[34] | 邓铃. 多发性骨髓瘤患者骨髓间充质干细胞通过TIGIT/CD226调节NK细胞功能的研究[D]. 天津: 天津医科大学, 2020. DOI: 10.27366/d.cnki.gtyku.2020.000608. doi:10.27366/d.cnki.gtyku.2020.000608 |
[35] | Chauvin JM, Ka M, Pagliano O, et al. IL15 stimulation with TIGIT blockade reverses CD155-mediated NK-cell dysfunction in melanoma[J]. Clin Cancer Res, 2020, 26(20): 5520-5533. DOI: 10.1158/1078-0432.CCR-20-0575. doi:10.1158/1078-0432.CCR-20-0575 |
[36] | Niu J, Maurice-Dror C, Lee DH, et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer[J]. Ann Oncol, 2022, 33(2): 169-180. DOI: 10.1016/j.annonc.2021.11.002. doi:10.1016/j.annonc.2021.11.002 |
[37] | Lee JB, Ha SJ, Kim HR. Clinical insights into novel immune checkpoint inhibitors[J]. Front Pharmacol, 2021, 12: 681320. DOI: 10.3389/fphar.2021.681320. doi:10.3389/fphar.2021.681320 |
[1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[2] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[3] | 任露, 谢晓丽, 张坤, 王丽娟.双氢青蒿素联合卡非佐米对多发性骨髓瘤细胞活性、增殖、凋亡的影响及机制研究[J]. 国际肿瘤学杂志, 2024, 51(3): 129-136. |
[4] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[5] | 黄华玉, 龚虹云, 宋启斌.胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[6] | 张碧霞, 丁江华.EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[7] | 赵建昊, 段衍超.多发性骨髓瘤髓外病变发病机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 55-59. |
[8] | 陈文莉, 倪志华, 陈红宇, 畅立圣, 范德生, 刘立伟, 丁青薇.免疫联合靶向治疗恶性腹膜间皮瘤1例[J]. 国际肿瘤学杂志, 2022, 49(8): 509-512. |
[9] | 高珊, 陆敏秋, 石磊, 褚彬, 房立娟, 项秋晴, 王宇彤, 丁月华, 鲍立.伊沙佐米联合方案治疗复发/难治多发性骨髓瘤的疗效和安全性分析[J]. 国际肿瘤学杂志, 2022, 49(5): 286-291. |
[10] | 孙笑可, 杨宇.肝细胞癌基因组及转录组特征与免疫相关性[J]. 国际肿瘤学杂志, 2022, 49(5): 302-306. |
[11] | 黄华玉, 宋启斌, 龚虹云, 宋佳.接受胸部放疗和免疫治疗肺癌患者肺炎发生率及影响因素分析[J]. 国际肿瘤学杂志, 2022, 49(12): 718-723. |
[12] | 李瑛珏, 路丹.PI3K通路在肿瘤免疫微环境中的作用机制[J]. 国际肿瘤学杂志, 2022, 49(11): 677-680. |
[13] | 徐秋月, 马咸梅, 岳琦.基于分子分型的子宫内膜癌免疫治疗[J]. 国际肿瘤学杂志, 2022, 49(11): 700-704. |
[14] | 林先勇, 胡翔, 殷海涛.免疫治疗联合放化疗治疗非小细胞肺癌的临床研究进展[J]. 国际肿瘤学杂志, 2022, 49(1): 56-60. |
[15] | 安江宏, 钱莘, 骆璞, 谭晓华.肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||