国际肿瘤学杂志››2021,Vol. 48››Issue (7): 436-440.doi:10.3760/cma.j.cn371439-20201019-00084
收稿日期:
2020-10-19修回日期:
2020-11-05出版日期:
2021-07-08发布日期:
2021-07-26通讯作者:
谭晓华 E-mail:xiaohua_t@hotmail.comAn Jianghong1, Qian Shen2, Luo Pu1, Tan Xiaohua1()
Received:
2020-10-19Revised:
2020-11-05Online:
2021-07-08Published:
2021-07-26Contact:
Tan Xiaohua E-mail:xiaohua_t@hotmail.com摘要:
肠道微生态与人类健康密切相关。肠道微生物组成特征改变促进肿瘤发生发展。特定肠道微生物及其代谢产物调节宿主生理功能和肿瘤微环境,显著影响抗肿瘤治疗反应及其不良反应。靶向肠道微生态的策略在肿瘤诊治中显示出有希望的应用前景。
安江宏, 钱莘, 骆璞, 谭晓华. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440.
An Jianghong, Qian Shen, Luo Pu, Tan Xiaohua. Application of gut microbiome in the diagnosis and treatment of tumor[J]. Journal of International Oncology, 2021, 48(7): 436-440.
[1] | Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy[J]. Nat Rev Cancer, 2017, 17(5):271-285. DOI: 10.1038/nrc.2017.13. doi:10.1038/nrc.2017.13 |
[2] | Makki K, Deehan EC, Walter J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe, 2018, 23(6):705-715. DOI: 10.1016/j.chom.2018.05.012. doi:10.1016/j.chom.2018.05.012 |
[3] | Huybrechts I, Zouiouich S, Loobuyck A, et al. The human micro-biome in relation to cancer risk: a systematic review of epidemiologic studies[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29(10):1856-1868. DOI: 10.1158/1055-9965.epi-20-0288. doi:10.1158/1055-9965.EPI-20-0288 |
[4] | Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494):973-980. DOI: 10.1126/science.aay9189. doi:10.1126/science.aay9189 |
[5] | Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli[J]. Nature, 2020, 580(7802):269-273. DOI: 10.1038/s41586-020-2080-8. doi:10.1038/s41586-020-2080-8 |
[6] | Dejea CM, Fathi P, Craig JM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria[J]. Science, 2018, 359(6375):592-597. DOI: 10.1126/science.aah3648. doi:10.1126/science.aah3648 |
[7] | Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer[J]. Nat Commun, 2020, 11(1):2168. DOI: 10.1038/s41467-020-16079-x. doi:10.1038/s41467-020-16079-xpmid:32358520 |
[8] | Yu AI, Zhao L, Eaton KA, et al. Gut microbiota modulate CD8 T cell responses to influence colitis-associated tumorigenesis[J]. Cell Rep, 2020, 31(1):107471. DOI: 10.1016/j.celrep.2020.03.035. doi:10.1016/j.celrep.2020.03.035 |
[9] | Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371):97-103. DOI: 10.1126/science.aan4236. doi:10.1126/science.aan4236pmid:29097493 |
[10] | 肖俊娟, 毕振旺, 李岩. 肠道微生态与肿瘤免疫调节的相关研究[J]. 国际肿瘤学杂志, 2017, 44(1):34-37. DOI: 10.3760/cma.j.issn.1673-422x.2017.01.009. |
[11] | Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178(4):795-806, e12. DOI: 10.1016/j.cell.2019.07.008. doi:S0092-8674(19)30773-1pmid:31398337 |
[12] | Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4):403-416. DOI: 10.1158/2159-8290.cd-17-1134. doi:10.1158/2159-8290.CD-17-1134pmid:29567829 |
[13] | Ferrie S, Webster A, Wu B, et al. Gastrointestinal surgery and the gut microbiome: a systematic literature review[J]. Eur J Clin Nutr, 2020, In press. DOI: 10.1038/s41430-020-0681-9. |
[14] | van Praagh JB, de Goffau MC, Bakker IS, et al. Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage[J]. Ann Surg, 2019, 269(5):911-916. DOI: 10.1097/sla.0000000000002651. doi:10.1097/SLA.0000000000002651 |
[15] | Gaines S, van Praagh JB, Williamson AJ, et al. Western diet promotes intestinal colonization by collagenolytic microbes and promotes tumor formation after colorectal surgery[J]. Gastroenterology, 2020, 158(4):958-970, e2. DOI: 10.1053/j.gastro.2019.10.020. doi:S0016-5085(19)41471-6pmid:31655031 |
[16] | Darbandi A, Mirshekar M, Shariati A, et al. The effects of probio-tics on reducing the colorectal cancer surgery complications: a perio-dic review during 2007—2017[J]. Clin Nutr, 2020, 39(8):2358-2367. DOI: 10.1016/j.clnu.2019.11.008. doi:S0261-5614(19)33135-8pmid:31831184 |
[17] | Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies[J]. Microbiome, 2018, 6(1):92. DOI: 10.1186/s40168-018-0483-7. doi:10.1186/s40168-018-0483-7pmid:29789015 |
[18] | Loman BR, Jordan KR, Haynes B, et al. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice[J]. Sci Rep, 2019, 9(1):16490. DOI: 10.1038/s41598-019-52893-0. doi:10.1038/s41598-019-52893-0pmid:31712703 |
[19] | Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3):548-563, e16. DOI: 10.1016/j.cell.2017.07.008. doi:10.1016/j.cell.2017.07.008 |
[20] | Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction[J]. Gut, 2018, 67(1):97-107. DOI: 10.1136/gutjnl-2017-313789. doi:10.1136/gutjnl-2017-313789pmid:28438965 |
[21] | Cui M, Xiao H, Li Y, et al. Faecal microbiota transplantation protects against radiation-induced toxicity[J]. EMBO Mol Med, 2017, 9(4):448-461. DOI: 10.15252/emmm.201606932. doi:10.15252/emmm.201606932 |
[22] | Guo H, Chou WC, Lai Y, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites[J]. Science, 2020, 370(6516):eaay9097. DOI: 10.1126/science.aay9097. doi:10.1126/science.aay9097 |
[23] | Liu MM, Li ST, Shu Y, et al. Probiotics for prevention of radiation-induced diarrhea: a meta-analysis of randomized controlled trials[J]. PLoS One, 2017, 12(6):e0178870. DOI: 10.1371/journal.pone.0178870. doi:10.1371/journal.pone.0178870 |
[24] | Chalabi M, Cardona A, Nagarkar DR, et al. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the OAK and POPLAR trials[J]. Ann Oncol, 2020, 31(4):525-531. DOI: 10.1016/j.annonc.2020.01.006. doi:S0923-7534(20)35927-5pmid:32115349 |
[25] | Wang Y, Wiesnoski DH, Helmink BA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis[J]. Nat Med, 2018, 24(12):1804-1808. DOI: 10.1038/s41591-018-0238-9. doi:10.1038/s41591-018-0238-9 |
[26] | Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab[J]. Ann Oncol, 2017, 28(6):1368-1379. DOI: 10.1093/annonc/mdx108. doi:10.1093/annonc/mdx108pmid:28368458 |
[27] | Zheng DW, Chen Y, Li ZH, et al. Optically-controlled bacterial metabolite for cancer therapy[J]. Nat Commun, 2018, 9(1):1680. DOI: 10.1038/s41467-018-03233-9. doi:10.1038/s41467-018-03233-9 |
[28] | Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510):1481-1489. DOI: 10.1126/science.abc3421. doi:10.1126/science.abc3421 |
[29] | Gregory AC, Zablocki O, Zayed AA, et al. The Gut Virome Database reveals age-dependent patterns of virome diversity in the human gut[J]. Cell Host Microbe, 2020, 28(5):724-740, e8. DOI: 10.1016/j.chom.2020.08.003. doi:10.1016/j.chom.2020.08.003 |
[30] | Lim B, Zimmermann M, Barry NA, et al. Engineered regulatory systems modulate gene expression of human commensals in the gut[J]. Cell, 2017, 169(3):547-558, e15. DOI: 10.1016/j.cell.2017.03.045. doi:10.1016/j.cell.2017.03.045 |
[1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[2] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[3] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰.髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[6] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[7] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[8] | 许萌, 姜伟, 朱海涛, 曹雄锋.癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[9] | 丁浩, 应劲涛, 付茂勇.CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
[10] | 曹梦清, 徐志勇, 施毓婷, 王凯.三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. |
[11] | 徐良富, 李袁飞.MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[12] | 黄华玉, 龚虹云, 宋启斌.胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[13] | 张雨潇, 张连生, 李莉娟.新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[14] | 张碧霞, 丁江华.EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[15] | 朱易, 陈健.硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||