国际肿瘤学杂志››2020,Vol. 47››Issue (6): 372-376.doi:10.3760/cma.j.cn371439-20191206-00039
收稿日期:
2019-12-06修回日期:
2019-12-19出版日期:
2020-06-08发布日期:
2020-07-22通讯作者:
张瑾 E-mail:zhangjintjmuch1@163.com基金资助:
Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin()
Received:
2019-12-06Revised:
2019-12-19Online:
2020-06-08Published:
2020-07-22Contact:
Zhang Jin E-mail:zhangjintjmuch1@163.comSupported by:
摘要:
乳腺癌是起源于乳腺上皮组织的恶性肿瘤,铁死亡是一种新发现的、不同于细胞凋亡和坏死的细胞程序性死亡方式。目前研究表明,脂质过氧化物在细胞内的堆积这一铁死亡诱发的关键过程可由多种机制诱发,铁死亡的调控与乳腺癌的发生、发展密切相关,药物诱导乳腺癌细胞铁死亡是颇具潜力与价值的研究方向。
徐一月, 赵少荣, 刘晶晶, 张瑾. 细胞铁死亡调控机制及其在乳腺癌治疗中的意义[J]. 国际肿瘤学杂志, 2020, 47(6): 372-376.
Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin. Mechanisms of ferroptosis and its significance in breast cancer therapy[J]. Journal of International Oncology, 2020, 47(6): 372-376.
[1] | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042. doi:10.1016/j.cell.2012.03.042 |
[2] | Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation[J]. IUBMB Life, 2017,69(6):414-422. DOI: 10.1002/iub.1621. doi:10.1002/iub.1621pmid:28349628 |
[3] | Toyokuni S, Ito F, Yamashita K, et al. Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis[J]. Free Radic Biol Med, 2017,108:610-626. DOI: 10.1016/j.freeradbiomed.2017.04.024. doi:10.1016/j.freeradbiomed.2017.04.024pmid:28433662 |
[4] | Lim JKM, Delaidelli A, Minaker SW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance[J]. Proc Natl Acad Sci U S A, 2019,116(19):9433-9442. DOI: 10.1073/pnas.1821323116. doi:10.1073/pnas.1821323116pmid:31000598 |
[5] | Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy[J]. J Cell Mol Med, 2019,23(8):4900-4912. DOI: 10.1111/jcmm.14511. doi:10.1111/jcmm.14511pmid:31232522 |
[6] | Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019,73(2):354-363.e3.DOI: 10.1016/j.molcel.2018.10.042. doi:10.1016/j.molcel.2018.10.042pmid:30581146 |
[7] | Zhang K, Wu L, Zhang P, et al. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566-1576. DOI: 10.1002/mc.22878. doi:10.1002/mc.22878pmid:30035324 |
[8] | Luo M, Wu L, Zhang K, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457-1472. DOI: 10.1038/s41418-017-0053-8. doi:10.1038/s41418-017-0053-8pmid:29348676 |
[9] | Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues[J]. Antioxid Redox Signal, 2018,29(1):61-74. DOI: 10.1089/ars.2017.7115. doi:10.1089/ars.2017.7115pmid:28462584 |
[10] | Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019,133:144-152. DOI: 10.1016/j.freeradbiomed.2018.09.014. doi:10.1016/j.freeradbiomed.2018.09.014pmid:30219704 |
[11] | Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018,9:1371. DOI: 10.3389/fphar.2018.01371. doi:10.3389/fphar.2018.01371pmid:30524291 |
[12] | Imai H, Matsuoka M, Kumagai T, et al. Lipid peroxidation-dependent cell death regulated by GPx4 and rerroptosis[J]. Curr Top Microbiol Immunol, 2017,403:143-170. DOI: 10.1007/82_2016_508. doi:10.1007/82_2016_508pmid:28204974 |
[13] | Fan Z, Wirth AK, Chen D, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis[J]. Oncogenesis, 2017,6(8):e371. DOI: 10.1038/oncsis.2017.65. doi:10.1038/oncsis.2017.65pmid:28805788 |
[14] | Zimta AA, Cenariu D, Irimie A, et al. The role of Nrf2 activity in cancer development and progression[J]. Cancers (Basel), 2019,11(11). E1755. DOI: 10.3390/cancers11111755. |
[15] | Horniblow RD, Bedford M, Hollingworth R, et al. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis[J]. Cancer Sci, 2017,108(6):1135-1143. DOI: 10.1111/cas.13234. doi:10.1111/cas.13234pmid:28281325 |
[16] | Guo J, Xu B, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin[J]. Cancer Res Treat, 2018,50(2):445-460. DOI: 10.4143/crt.2016.572. doi:10.4143/crt.2016.572pmid:28494534 |
[17] | Lin X, Liao J, Yang Z, et al. Inhibition of cisplatin-resistant head and neck squamous cell carcinoma by combination of Afatinib with PD0325901, a MEK inhibitor[J]. Am J Cancer Res, 2019,9(6):1282-1292. pmid:31285959 |
[18] | Ruiu R, Rolih V, Bolli E, et al. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter[J]. Cancer Immunol Immunother, 2019,68(1):131-141. DOI: 10.1007/s00262-018-2185-1. doi:10.1007/s00262-018-2185-1pmid:29947961 |
[19] | Masaldan S, Clatworthy SAS, Gamell C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018,14:100-115. DOI: 10.1016/j.redox. 2017.08.015. doi:10.1016/j.redox.2017.08.015pmid:28888202 |
[20] | Hao S, Yu J, He W, et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells[J]. Neoplasia, 2017,19(12):1022-1032. DOI: 10.1016/j.neo.2017.10.005. doi:10.1016/j.neo.2017.10.005pmid:29144989 |
[21] | Gai C, Yu M, Li Z, et al. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer[J]. J Cell Physiol, 2020,235(4):3329-3339. DOI: 10.1002/jcp.29221. doi:10.1002/jcp.29221pmid:31541463 |
[22] | Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 2013,24(4):450-465. DOI: 10.1016/j.ccr.2013.08.020. doi:10.1016/j.ccr.2013.08.020 |
[23] | Geng N, Shi BJ, Li SL, et al. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells[J]. Eur Rev Med Pharmacol Sci, 2018,22(12):3826-3836. DOI: 10.26355/eurrev_201806_15267. doi:10.26355/eurrev_201806_15267pmid:29949159 |
[24] | Yu M, Gai C, Li Z, et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells[J]. Cancer Sci, 2019,110(10):3173-3182. DOI: 10.1111/cas.14181. doi:10.1111/cas.14181pmid:31464035 |
[25] | Yu H, Yang C, Jian L, et al. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor[J]. Oncol Rep, 2019,42(2):826-838. DOI: 10.3892/or.2019.7189. doi:10.3892/or.2019.7189pmid:31173262 |
[26] | Ma S, Henson ES, Chen Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016,7:e2307. DOI: 10.1038/cddis.2016.208. doi:10.1038/cddis.2016.208pmid:27441659 |
[27] | Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017,12(8):e0182921. DOI: 10.1371/journal.pone.0182921. doi:10.1371/journal.pone.0182921pmid:28827805 |
[28] | Nagpal A, Redvers RP, Ling X, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+vebreast cancer metastasis[J]. Breast Cancer Res, 2019,21(1):94. DOI: 10.1186/s13058-019-1177-1. doi:10.1186/s13058-019-1177-1pmid:31409375 |
[29] | Mbaveng AT, Bitchagno GTM, Kuete V, et al. Cytotoxicity of ungeremine towards multi-factorial drug resistant cancer cells and induction of apoptosis, ferroptosis, necroptosis and autophagy[J]. Phytomedicine, 2019,60:152832. DOI: 10.1016/j.phymed.2019.152832. doi:10.1016/j.phymed.2019.152832pmid:31031043 |
[30] | Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells[J]. Toxicol Appl Pharmacol, 2018,356:36-43. DOI: 10.1016/j.taap.2018.07.017. doi:10.1016/j.taap.2018.07.017pmid:30030096 |
[31] | Pizzamiglio S, De Bortoli M, Taverna E, et al. Expression of iron-related proteins differentiate non-cancerous and cancerous breast tumors[J]. Int J Mol Sci, 2017, 18(2). pii: E410. DOI: 10.3390/ijms18020410. doi:10.3390/ijms18020444pmid:28230770 |
[32] | Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019,10(11):822. DOI: 10.1038/s41419-019-2064-5. doi:10.1038/s41419-019-2064-5pmid:31659150 |
[33] | Tang M, Chen Z, Wu D, et al. Ferritinophagy/ferroptosis: iron-related newcomers in human diseases[J]. J Cell Physiol, 2018,233(12):9179-9190. DOI: 10.1002/jcp.26954. doi:10.1002/jcp.26954pmid:30076709 |
[34] | Gryzik M, Srivastava A, Longhi G, et al. Expression and characterization of the ferritin binding domain of nuclear receptor coactivator-4 (NCOA4)[J]. Biochim Biophys Acta Gen Subj, 2017,1861(11 Pt A):2710-2716. DOI: 10.1016/j.bbagen.2017.07.015. doi:10.1016/j.bbagen.2017.07.015pmid:28754384 |
[35] | Zhang Z, Yao Z, Wang L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018,14(12):2083-2103. DOI: 10.1080/15548627.2018.503146. doi:10.1080/15548627.2018.1503146pmid:30081711 |
[36] | Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016,113(34):e4966-e4975. DOI: 10.1073/pnas.1603244113. doi:10.1073/pnas.1603244113pmid:27506793 |
[37] | Jarc E, Kump A, Malavasic P, et al. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018,1863(3):247-265. DOI: 10.1016/j.bbalip.2017.12.006. doi:10.1016/j.bbalip.2017.12.006pmid:29229414 |
[38] | Kuwata H, Nakatani E, Shimbara-Matsubayashi S, et al. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019,1864(11):1606-1618. DOI: 10.1016/j.bbalip.2019.07.013. doi:10.1016/j.bbalip.2019.07.013pmid:31376475 |
[39] | Jalil A, Bourgeois T, Ménégaut L, et al. Revisiting the role of LXRs in PUFA metabolism and phospholipid homeostasis[J]. Int J Mol Sci, 2019, (15). pii: E3787. DOI: 10.3390/ijms20153787. doi:10.3390/ijms20153824pmid:31387280 |
[40] | Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017,13(1):91-98. DOI: 10.1038/nchembio.2239. doi:10.1038/nchembio.2239pmid:27842070 |
[41] | Wu X, Zhi F, Lun W, et al. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis[J]. Int J Mol Med, 2018,41(4):1992-2002. DOI: 10.3892/ijmm.2018.3427. doi:10.3892/ijmm.2018.3427pmid:29393361 |
[42] | Park S, Oh J, Kim M, et al. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis[J]. Anim Cells Syst (Seoul), 2018,22(5):334-340. DOI: 10.1080/19768354.2018.1512521. doi:10.1080/19768354.2018.1512521 |
[43] | Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019,26(3):420-432, e9. DOI: 10.1016/j.chembiol.2018.11.016. doi:10.1016/j.chembiol.2018.11.016pmid:30686757 |
[44] | Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017,20(7):1692-1704. DOI: 10.1016/j.celrep.2017.07.055. doi:10.1016/j.celrep.2017.07.055pmid:28813679 |
[45] | Kaiser AM, Attardi LD. Deconstructing networks of p53-mediated tumor suppression in vivo[J]. Cell Death Differ, 2018,25(1):93-103. DOI: 10.1038/cdd.2017.171. doi:10.1038/cdd.2017.171pmid:29099489 |
[46] | Liu DS, Duong CP, Haupt S, et al. Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation[J]. Nat Commun, 2017,8:14844. DOI: 10.1038/ncomms14844. doi:10.1038/ncomms14844pmid:28348409 |
[47] | Tarangelo A, Magtanong L, Bieging-Rolett KT, et al. P53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Rep, 2018,22(3):569-575. DOI: 10.1016/j.celrep.2017.12.077. doi:10.1016/j.celrep.2017.12.077pmid:29346757 |
[48] | Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[J]. Cell Death Differ, 2018,25(1):104-113. DOI: 10.1038/cdd.2017.169. doi:10.1038/cdd.2017.169pmid:29149101 |
[49] | Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53[J]. Cancer Res, 2018,78(13):3484-3496. DOI: 10.1158/0008-5472.CAN-17-3454. doi:10.1158/0008-5472.CAN-17-3454pmid:29588351 |
[50] | Kawano Y, Iwama E, Tsuchihashi K, et al. CD44 variant-dependent regulation of redox balance in EGFR mutation-positive non-small cell lung cancer: a target for treatment[J]. Lung Cancer, 2017,113:72-78. DOI: 10.1016/j.lungcan.2017.09.008. doi:10.1016/j.lungcan.2017.09.008pmid:29110853 |
[51] | Xiong H, Wang C, Wang Z, et al. Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability[J]. J Control Release, 2019,309:145-157. DOI: 10.1016/j.jconrel.2019.07.029. doi:10.1016/j.jconrel.2019.07.029pmid:31348976 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[6] | 陈波光, 王苏贵, 张永杰.血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[7] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[8] | 王景, 许文婷.中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[9] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英.HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[10] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰.miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[11] | 王文德, 曾德.乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[12] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[13] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[14] | 周婷, 徐少华, 梅林.贝伐珠单抗联合卡培他滨治疗晚期乳腺癌的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 144-149. |
[15] | 黎立喜, 张娣, 罗扬, 马飞.PARP抑制剂在乳腺癌中的临床应用[J]. 国际肿瘤学杂志, 2023, 50(2): 91-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||