国际肿瘤学杂志››2020,Vol. 47››Issue (4): 249-251.doi:10.3760/cma.j.cn371439-20191010-00012
收稿日期:
2019-10-10修回日期:
2020-03-27出版日期:
2020-04-08发布日期:
2020-05-26通讯作者:
程忠平 E-mail:mdcheng@tongji.edu.cn基金资助:
Yang Yiting, Cheng Zhongping()
Received:
2019-10-10Revised:
2020-03-27Online:
2020-04-08Published:
2020-05-26Contact:
Cheng Zhongping E-mail:mdcheng@tongji.edu.cnSupported by:
摘要:
卵巢癌是女性常见的致命性恶性肿瘤,最常见的病理类型是起源于卵巢或输卵管上皮的卵巢上皮癌(EOC),约占85%~90%。EOC患者的标准治疗方法是肿瘤细胞减灭术,术后进行铂类/紫杉醇化疗,细胞的化疗耐药已成为EOC患者复发并走向死亡的重要原因。目前已有许多学者认为卵巢癌的肿瘤环境富含广谱的肿瘤促炎细胞因子和趋化因子。炎症能使上皮细胞分裂分化增加,正常的上皮组织长期暴露于炎性环境会逐渐向恶性转化,炎性肿瘤微环境促进转变的恶性肿瘤细胞侵袭、转移,最终发生耐药。
杨怡婷, 程忠平. 炎症细胞因子在卵巢上皮癌化疗耐药中的作用[J]. 国际肿瘤学杂志, 2020, 47(4): 249-251.
Yang Yiting, Cheng Zhongping. The role of inflammatory cytokines in chemoresistance of epithelial ovarian cancer[J]. Journal of International Oncology, 2020, 47(4): 249-251.
[1] | Savant SS, Sriramkumar S, O'Hagan HM. The Role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer[J]. Cancers (Basel), 2018, 10(8). pii: E251. DOI: 10.3390/cancers10080251. |
[2] | Xuan Y, Wang YN . Hypoxia/IL-1α axis promotes gastric cancer progression and drug resistance[J]. J Dig Dis, 2017,18(9):511-520. DOI: 10.1111/1751-2980.12496. doi:10.1111/cdd.2017.18.issue-9 |
[3] | Yu Y, Zhang Q, Ma C , et al. Mesenchymal stem cells recruited by castration-induced inflammation activation accelerate prostate cancer hormone resistance via chemokine ligand 5 secretion[J]. Stem Cell Res Ther, 2018,9(1):242. DOI: 10.1186/s13287-018-0989-8. doi:10.1186/s13287-018-0989-8 |
[4] | 李研 . 白藜芦醇对卵巢癌细胞顺铂化疗的增敏作用[J]. 国际肿瘤学杂志, 2018,45(1):5-9. DOI: 10.3760/cma.j.issn.1673-422X.2018.01.002. |
[5] | Vaidyanathan A, Sawers L, Gannon AL , et al. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells[J]. Br J Cancer, 2016,115(4):431-441. DOI: 10.1038/bjc.2016.203. doi:10.1038/bjc.2016.203 |
[6] | Kenda Suster N, Smrkolj S, Virant-Klun I . Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers[J]. J Ovarian Res, 2017,10(1):11. DOI: 10.1186/s13048-017-0306-7. doi:10.1186/s13048-017-0306-7 |
[7] | Ricci F, Carrassa L, Christodoulou MS , et al. A high-throughput screening of a chemical compound library in ovarian cancer stem cells[J]. Comb Chem High Throughput Screen, 2018,21(1):50-56. DOI: 10.2174/1386207321666180124093406. doi:10.2174/1386207321666180124093406 |
[8] | Cohen S, Mehrabi S, Yao X , et al. Reactive oxygen species and serous epithelial ovarian adenocarcinoma[J]. Cancer Res J (N Y N Y), 2016,4(6):106-114. DOI: 10.11648/j.crj.20160406.13. |
[9] | Nunes SC, Serpa J. Glutathione in ovarian cancer: a double-edged sword[J]. Int J Mol Sci, 2018, 19(7). pii: E1882. DOI: 10.3390/ijms19071882. |
[10] | Bansal A, Simon MC . Glutathione metabolism in cancer progression and treatment resistance[J]. J Cell Biol, 2018,217(7):2291-2298. DOI: 10.1083/jcb.201804161. doi:10.1083/jcb.201804161 |
[11] | Browning L, Patel MR, Horvath EB , et al. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis[J]. Cancer Manag Res, 2018,10:6685-6693. DOI: 10.2147/CMAR.S179189. doi:10.2147/CMAR |
[12] | Wang L, Zhang F, Cui JY , et al. CAFs enhance paclitaxel resistance by inducing EMT through the IL6/JAK2/STAT3 pathway[J]. Oncol Rep, 2018,39(5):2081-2090. DOI: 10.3892/or.2018.6311. |
[13] | Pasquier J, Gosset M, Geyl C , et al. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer[J]. Mol Cancer, 2018,17(1):47. DOI: 10.1186/s12943-018-0787-z. doi:10.1186/s12943-018-0787-z |
[14] | Devapatla B, Sharma A, Woo S . CXCR2 inhibition combined with sorafenib improved antitumor and antiangiogenic response in preclinical models of ovarian cancer[J]. PLoS One, 2015,10(9):e0139237. DOI: 10.1371/journal.pone.0139237. doi:10.1371/journal.pone.0139237 |
[15] | Wen J, Zhao Z, Huang L , et al. IL-8 promotes cell migration through regulating EMT by activating the Wnt/beta-catenin pathway in ovarian cancer[J]. J Cell Mol Med, 2020,24(2):1588-1598. DOI: 10.1111/jcmm.14848. doi:10.1111/jcmm.v24.2 |
[16] | Li L, Yu J, Duan Z , et al. The effect of NFATc1 on vascular generation and the possible underlying mechanism in epithelial ovarian carcinoma[J]. Int J Oncol, 2016,48(4):1457-1466. DOI: 10.3892/ijo.2016.3355. doi:10.3892/ijo.2016.3355 |
[17] | Cheng M, Cai W, Huang W , et al. Histone deacetylase 6 regulated expression of IL-8 is involved in the doxorubicin (Dox) resistance of osteosarcoma cells via modulating ABCB1 transcription[J]. Eur J Pharmacol, 2018,840:1-8. DOI: 10.1016/j.ejphar.2018.09.032. doi:10.1016/j.ejphar.2018.09.032 |
[18] | Stronach EA, Cunnea P, Turner C , et al. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma[J]. Oncotarget, 2015,6(31):31593-31603. DOI: 10.18632/oncotarget.3415. doi:10.18632/oncotarget.v6i31 |
[19] | Yin J, Zeng F, Wu N , et al. Interleukin-8 promotes human ovarian cancer cell migration by epithelial-mesenchymal transition induction in vitro[J]. Clin Transl Oncol, 2015,17(5):365-370. DOI: 10.1007/s12094-014-1240-4. doi:10.1007/s12094-014-1240-4 |
[20] | Suckau O, Gross I, Schrötter S , et al. LPA1, LPA2, LPA4, and LPA6receptor expression during mouse brain development[J]. Dev Dyn, 2019,248(5):375-395. DOI: 10.1002/dvdy.23. doi:10.1002/dvdy.v248.5 |
[21] | Xu Y. Lysophospholipid signaling in the epithelial ovarian cancer tumor microenvironment[J]. Cancers (Basel), 2018, 10(7). pii: E227. DOI: 10.3390/cancers10070227. |
[22] | Ray U, Roy SS, Chowdhury SR . Lysophosphatidic acid promotes epithelial to mesenchymal transition in ovarian cancer cells by repressing SIRT1[J]. Cell Physiol Biochem, 2017,41(2):795-805. DOI: 10.1159/000458744. doi:10.1159/000458744 |
[23] | Rogers LC, Davis RR, Said N , et al. Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy[J]. Redox Biol, 2018,15:380-386. DOI: 10.1016/j.redox.2018.01.002. doi:10.1016/j.redox.2018.01.002 |
[24] | Seo EJ, Kwon YW, Jang IH , et al. Autotaxin regulates maintenance of ovarian cancer stem cells through lysophosphatidic acid-mediated autocrine mechanism[J]. Stem Cells, 2016,34(3):551-564. DOI: 10.1002/stem.2279. doi:10.1002/stem.2279 |
[1] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[2] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[3] | 安荣, 刘美华, 王佩晨, 王晓慧.Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. |
[4] | 李晨曦, 赵宏伟.二次肿瘤细胞减灭术治疗初始减瘤手术不满意铂敏感复发性卵巢癌的预后及影响因素分析[J]. 国际肿瘤学杂志, 2023, 50(6): 342-347. |
[5] | 张丽, 向卓, 王强, 毕经旺.CAR-T免疫治疗相关的细胞因子释放综合征研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 377-381. |
[6] | 杨丽蓉, 王羽丰.预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[7] | 刘小洁, 黄俊星.NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. |
[8] | 肖楠, 孙鹏飞.氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[9] | 杨娅, 宁晓飞, 李炳亮, 姚慧, 山长平, 吕敏.原花青素通过诱导活性氧产生介导抗SNU-1胃癌细胞株的作用机制研究[J]. 国际肿瘤学杂志, 2022, 49(5): 257-262. |
[10] | 张永丽, 张若佳, 范焕彩, 葛鲁娜, 王林.TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. |
[11] | 李晨曦, 赵宏伟.PARP抑制剂治疗铂耐药卵巢癌的研究进展[J]. 国际肿瘤学杂志, 2021, 48(3): 180-183. |
[12] | 李哲丰, 李洁, 赵晓婷, 岳文涛.GLDC通过PI3K/Akt/mTOR通路调控卵巢癌细胞的增殖与凋亡[J]. 国际肿瘤学杂志, 2021, 48(12): 716-722. |
[13] | 关若丹, 摘译.奥拉帕利对携带BRCA突变的新诊断晚期卵巢癌、原发性腹膜癌、输卵管癌患者维持治疗的有效性研究:SOLO1试验的亚组分析(摘译)[J]. 国际肿瘤学杂志, 2021, 48(12): 764-768. |
[14] | 郑静, 姚胜, 沈文洁, 孙志佳, 赵辉, 付艳, 高珂, 杜楠.腹腔灌注贝伐珠单抗联合白蛋白紫杉醇和卡铂治疗卵巢癌所致癌性腹腔粘连的临床探讨[J]. 国际肿瘤学杂志, 2021, 48(11): 660-665. |
[15] | 杨立芬, 宋伟, 许大伟, 武军, 高然.miR-103a-3p/CHI3L1在卵巢癌细胞增殖和血管拟生中的作用机制[J]. 国际肿瘤学杂志, 2020, 47(6): 333-339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||