国际肿瘤学杂志››2023,Vol. 50››Issue (8): 493-497.doi:10.3760/cma.j.cn371439-20230525-00094
收稿日期:
2023-05-25修回日期:
2023-07-02出版日期:
2023-08-08发布日期:
2023-10-24通讯作者:
王晓慧 E-mail:xiaohuiwang2015@163.com基金资助:
An Rong1, Liu Meihua1, Wang Peichen1, Wang Xiaohui2()
Received:
2023-05-25Revised:
2023-07-02Online:
2023-08-08Published:
2023-10-24Contact:
Wang Xiaohui E-mail:xiaohuiwang2015@163.comSupported by:
摘要:
核转录因子红系2相关因子2(Nrf2)是调节氧化还原、脂质代谢和蛋白质动态平衡的重要转录因子,在保护机体免受氧化应激损伤中发挥重要作用。近年来,越来越多的研究表明,Nrf2在卵巢癌中通过多种机制被激活,可诱导抗氧化酶增加、改变性激素代谢以及诱导下游靶标发挥作用。深入研究Nrf2促进卵巢癌发展的机制,探索其在耐药中的作用并寻求新的治疗靶点,可为耐药卵巢癌的治疗提供新的思路。
安荣, 刘美华, 王佩晨, 王晓慧. Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497.
An Rong, Liu Meihua, Wang Peichen, Wang Xiaohui. Research progress of Nrf2 in ovarian cancer[J]. Journal of International Oncology, 2023, 50(8): 493-497.
[1] | Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J].Chin Med J (Engl),2022,135(5): 584-590. DOI:10.1097/CM9.0000000000002108. |
[2] | Sun X, Li J, Li Y, et al. Apatinib, a novel tyrosine kinase inhibitor, promotes ROS-dependent apoptosis and autophagy via the Nrf2/HO-1 pathway in ovarian cancer cells[J].Oxid Med Cell Longev,2020,2020: 3145182. DOI:10.1155/2020/3145182. |
[3] | Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation[J].Life Sci,2022,291: 120111. DOI:10.1016/j.lfs.2021.120111. |
[4] | Ashrafizadeh M, Ahmadi Z, Samarghandian S, et al. MicroRNA-mediated regulation of Nrf2 signaling pathway: implications in disease therapy and protection against oxidative stress[J].Life Sci,2020,244: 117329. DOI:10.1016/j.lfs.2020.117329. |
[5] | Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention[J].Mutat Res,2005,591(1/2): 93-102. DOI:10.1016/j.mrfmmm.2005.04.017. |
[6] | Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2[J].Curr Cancer Drug Targets,2018,18(6): 538-557. DOI:10.2174/1568009617666171002144228. pmid:28969555 |
[7] | Wang L, Zhang C, Qin L, et al. The prognostic value of NRF2 in solid tumor patients: a meta-analysis[J].Oncotarget,2017,9(1): 1257-1265. DOI:10.18632/oncotarget.19838. |
[8] | Taguchi K, Yamamoto M. The KEAP1-NRF2 system as a molecular target of cancer treatment[J].Cancers (Basel),2020,13(1): 46. DOI:10.3390/cancers13010046. |
[9] | Wilson LA, Gemin A, Espiritu R, et al. ets-1 is transcriptionally up-regulated by H2O2via an antioxidant response element[J].FASEB J,2005,19(14): 2085-2087. DOI:10.1096/fj.05-4401fje. pmid:16234432 |
[10] | Sun C, Han B, Zhai Y, et al. Dihydrotanshinone Ⅰ inhibits ovarian tumor growth by activating oxidative stress through Keap1-mediated Nrf2 ubiquitination degradation[J].Free Radic Biol Med,2022,180: 220-235. DOI:10.1016/j.freeradbiomed.2022.01.015. |
[11] | Wang X, Lu X, Zhu R, et al. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway[J].Neurochem Res,2017,42(4): 1130-1140. DOI:10.1007/s11064-016-2147-y. pmid:28124213 |
[12] | Alam MB, Naznin M, Islam S, et al. High resolution mass spectroscopy-based secondary metabolite profiling of Nymphaea nouchali (Burm. f) stem attenuates oxidative stress via regulation of MAPK/Nrf2/HO-1/ROS pathway[J].Antioxidants (Basel),2021,10(5): 719. DOI:10.3390/antiox10050719. |
[13] | Zhao F, Hong X, Li D, et al. Correction to: diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway[J].Med Oncol,2021,38(7): 78. DOI:10.1007/s12032-021-01525-7. pmid:34086130 |
[14] | Tossetta G, Fantone S, Montanari E, et al. Role of NRF2 in ovarian cancer[J].Antioxidants (Basel),2022,11(4): 663. DOI:10.3390/antiox11040663. |
[15] | Guo G, Gao Z, Tong M, et al. NQO1 is a determinant for cellular sensitivity to anti-tumor agent Napabucasin[J].Am J Cancer Res,2020,10(5): 1442-1454. pmid:32509390 |
[16] | Gao Z, Gao X, Fan W, et al. Bisphenol a and genistein have opposite effects on adult chicken ovary by acting on ERα/Nrf2-Keap1-signaling pathway[J].Chem Biol Interact,2021,347: 109616. DOI:10.1016/j.cbi.2021.109616. |
[17] | Czogalla B, Kahaly M, Mayr D, et al. Interaction of ERα and NRF2 impacts survival in ovarian cancer patients[J].Int J Mol Sci,2018,20(1): 112. DOI:10.3390/ijms20010112. |
[18] | Konan HP, Kassem L, Omarjee S, et al. ERα-36 regulates progesterone receptor activity in breast cancer[J].Breast Cancer Res,2020,22(1): 50. DOI:10.1186/s13058-020-01278-7. |
[19] | Tan J, Song C, Wang D, et al. Expression of hormone receptors predicts survival and platinum sensitivity of high-grade serous ovarian cancer[J].Biosci Rep,2021,41(5): BSR20210478. DOI:10.1042/BSR20210478. |
[20] | Czogalla B, Kahaly M, Mayr D, et al. Correlation of NRF2 and progesterone receptor and its effects on ovarian cancer biology[J].Cancer Manag Res,2019,11: 7673-7684. DOI:10.2147/CMAR.S210004. pmid:31616183 |
[21] | Tossetta G, Marzioni D. Natural and synthetic compounds in ovarian cancer: a focus on NRF2/KEAP1 pathway[J].Pharmacol Res,2022,183: 106365. DOI:10.1016/j.phrs.2022.106365. |
[22] | Proshkina E, Plyusnin S, Babak T, et al. Terpenoids as potential geroprotectors[J].Antioxidants (Basel),2020,9(6): 529. DOI:10.3390/antiox9060529. |
[23] | Ding DN, Xie LZ, Shen Y, et al. Insights into the role of oxidative stress in ovarian cancer[J].Oxid Med Cell Longev,2021,2021: 8388258. DOI:10.1155/2021/8388258. |
[24] | Li D, Hong X, Zhao F, et al. Targeting Nrf2 may reverse the drug resistance in ovarian cancer[J].Cancer Cell Int,2021,21(1): 116. DOI:10.1186/s12935-021-01822-1. pmid:33596893 |
[25] | Xia MH, Yan XY, Zhou L, et al. p62 suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells[J].J Cancer,2020,11(6): 1299-1307. DOI:10.7150/jca.34423. |
[26] | Yan XY, Qu XZ, Xu L, et al. Insight into the role of p62 in the cisplatin resistant mechanisms of ovarian cancer[J].Cancer Cell Int,2020,20: 128. DOI:10.1186/s12935-020-01196-w. |
[27] | Jena KK, Kolapalli SP, Mehto S, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy[J].EMBO J,2018,37(18): e98358. DOI:10.15252/embj.201798358. |
[28] | Xu P, Jiang L, Yang Y, et al. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation[J].Theranostics,2020,10(8): 3767-3778. DOI:10.7150/thno.43142. pmid:32206121 |
[29] | Mirzaei S, Mohammadi AT, Gholami MH, et al. Nrf2 signaling pathway in cisplatin chemotherapy: potential involvement in organ protection and chemoresistance[J].Pharmacol Res,2021,167: 105575. DOI:10.1016/j.phrs.2021.105575. |
[30] | Badmann S, Mayr D, Schmoeckel E, et al. AKR1C1/2 inhibition by MPA sensitizes platinum resistant ovarian cancer towards carboplatin[J].Sci Rep,2022,12(1): 1862. DOI:10.1038/s41598-022-05785-9. pmid:35115586 |
[31] | Liu J, Xia X, Huang P. xCT: a critical molecule that links cancer metabolism to redox signaling[J].Mol Ther,2020,28(11): 2358-2366. DOI:10.1016/j.ymthe.2020.08.021. pmid:32931751 |
[32] | Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins[J].FEBS J,2021,288(9): 2784-2835. DOI:10.1111/febs.15531. |
[33] | Sirota R, Gibson D, Kohen R. The timing of caffeic acid treatment with cisplatin determines sensitization or resistance of ovarian carcinoma cell lines[J].Redox Biol,2017,11: 170-175. DOI:10.1016/j.redox.2016.12.006. pmid:27951496 |
[34] | Huang W, Chen L, Zhu K, et al. Oncogenic microRNA-181d binding to OGT contributes to resistance of ovarian cancer cells to cisplatin[J].Cell Death Discov,2021,7(1): 379. DOI:10.1038/s41420-021-00715-6. pmid:34876558 |
[35] | Deng X, Lin N, Fu J, et al. The Nrf2/PGC1 α pathway regulates antioxidant and proteasomal activity to alter cisplatin sensitivity in ovarian cancer[J].Oxid Med Cell Longev,2020,2020: 4830418. DOI:10.1155/2020/4830418. |
[36] | Wu M, Ma L, Xue L, et al. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice[J].Aging (Albany NY),2019,11(3): 1030-1044. DOI:10.18632/aging.101808. |
[37] | Chen Q, Xu Z, Li X, et al. Epigallocatechin gallate and theaflavins independently alleviate cyclophosphamide-induced ovarian damage by inhibiting the overactivation of primordial follicles and follicular atresia[J].Phytomedicine,2021,92: 153752. DOI:10.1016/j.phymed.2021.153752. |
[1] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[2] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[3] | 姜溪, 武永存, 梁艳, 楚丽, 段颖欣, 王力军, 霍俊杰.派安普利单抗联合化疗对晚期非小细胞肺癌患者血管生成及循环内皮细胞的影响[J]. 国际肿瘤学杂志, 2024, 51(2): 89-94. |
[4] | 李晨曦, 赵宏伟.二次肿瘤细胞减灭术治疗初始减瘤手术不满意铂敏感复发性卵巢癌的预后及影响因素分析[J]. 国际肿瘤学杂志, 2023, 50(6): 342-347. |
[5] | 杨丽蓉, 王羽丰.预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[6] | 刘小洁, 黄俊星.NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. |
[7] | 王熙, 吴川清.结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. |
[8] | 马小平, 常君丽, 孙星媛, 杨燕萍.长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. |
[9] | 陈佩瑶, 贾军梅.缺氧影响免疫治疗耐药的机制与应用[J]. 国际肿瘤学杂志, 2021, 48(8): 489-493. |
[10] | 李晨曦, 赵宏伟.PARP抑制剂治疗铂耐药卵巢癌的研究进展[J]. 国际肿瘤学杂志, 2021, 48(3): 180-183. |
[11] | 李哲丰, 李洁, 赵晓婷, 岳文涛.GLDC通过PI3K/Akt/mTOR通路调控卵巢癌细胞的增殖与凋亡[J]. 国际肿瘤学杂志, 2021, 48(12): 716-722. |
[12] | 关若丹, 摘译.奥拉帕利对携带BRCA突变的新诊断晚期卵巢癌、原发性腹膜癌、输卵管癌患者维持治疗的有效性研究:SOLO1试验的亚组分析(摘译)[J]. 国际肿瘤学杂志, 2021, 48(12): 764-768. |
[13] | 郑静, 姚胜, 沈文洁, 孙志佳, 赵辉, 付艳, 高珂, 杜楠.腹腔灌注贝伐珠单抗联合白蛋白紫杉醇和卡铂治疗卵巢癌所致癌性腹腔粘连的临床探讨[J]. 国际肿瘤学杂志, 2021, 48(11): 660-665. |
[14] | 杨立芬, 宋伟, 许大伟, 武军, 高然.miR-103a-3p/CHI3L1在卵巢癌细胞增殖和血管拟生中的作用机制[J]. 国际肿瘤学杂志, 2020, 47(6): 333-339. |
[15] | 宋春青, 张颖, 张志国, 郭宏伟, 陆汉红, 韩磊.β-榄香烯联合吉非替尼治疗一线应用吉非替尼后缓慢进展晚期肺腺癌患者的临床疗效[J]. 国际肿瘤学杂志, 2020, 47(5): 272-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||