国际肿瘤学杂志››2023,Vol. 50››Issue (1): 42-46.doi:10.3760/cma.j.cn371439-20220614-00008
收稿日期:
2022-06-14修回日期:
2022-10-31出版日期:
2023-01-08发布日期:
2023-03-16通讯作者:
吴川清 E-mail:wucq2014@hust.edu.cnReceived:
2022-06-14Revised:
2022-10-31Online:
2023-01-08Published:
2023-03-16Contact:
Wu Chuanqing E-mail:wucq2014@hust.edu.cn摘要:
结直肠癌的化疗疗效和预后受到多药耐药现象的影响。针对多药耐药发生的常见环节,包括ATP结合盒蛋白、代谢酶、细胞凋亡基因、信号通路及遗传物质等,目前已有诸多研究尝试研发相对应的抑制剂以克服耐药问题,其中P-糖蛋白抑制剂和破坏DNA复制修复药物的开发较为成熟。开发新的耐药靶点抑制剂,或探究已有耐药靶点抑制剂与传统治疗方案联用,是克服结直肠癌耐药的突破点。
王熙, 吴川清. 结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46.
Wang Xi, Wu Chuanqing. Research progress in reversing multidrug resistance in colorectal cancer[J]. Journal of International Oncology, 2023, 50(1): 42-46.
[1] | Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002. doi:10.1016/j.jncc.2022.02.002 |
[2] | 中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华外科杂志, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390. doi:10.3760/cma.j.cn112139-20200518-00390 |
[3] | Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708. doi:10.3322/caac.21708 |
[4] | Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. Int J Mol Sci, 2020, 21(9): 3233. DOI: 10.3390/ijms21093233. doi:10.3390/ijms21093233 |
[5] | Wang YJ, Zhang YK, Zhang GN, et al. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: in vitro and in vivo study[J]. Cancer Lett, 2017, 396: 145-154. DOI: 10.1016/j.canlet.2017.03.011. doi:10.1016/j.canlet.2017.03.011 |
[6] | Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial[J]. Lancet, 2013, 381(9863): 303-312. DOI: 10.1016/S0140-6736(12)61900-X. doi:10.1016/S0140-6736(12)61900-Xpmid:23177514 |
[7] | 中华人民共和国国家卫生健康委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2020年版)[J]. 中国实用外科杂志, 2020, 40(6): 601-625. DOI: 10.19538/j.cjps.issn1005-2208.2020.06.01. doi:10.19538/j.cjps.issn1005-2208.2020.06.01 |
[8] | Schultheis B, Folprecht G, Kuhlmann J, et al. Regorafenib in combination with FOLFOX or FOLFIRI as first- or second-line treatment of colorectal cancer: results of a multicenter, phase Ⅰb study[J]. Ann Oncol, 2013, 24(6): 1560-1567. DOI: 10.1093/annonc/mdt056. doi:10.1093/annonc/mdt056pmid:23493136 |
[9] | Chen Y, Lu Y, Hu D, et al. Cabazitaxel-loaded MPEG-PCL copolymeric nanoparticles for enhanced colorectal cancer therapy[J]. Appl Mater Today, 2021, 25: 101210. DOI: 10.1016/j.apmt.2021.101210. doi:10.1016/j.apmt.2021.101210 |
[10] | Jiang Y, Guo Z, Fang J, et al. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer[J]. Mater Sci Eng C Mater Biol Appl, 2020, 107: 110224. DOI: 10.1016/j.msec.2019.110224. doi:10.1016/j.msec.2019.110224 |
[11] | Wang Z, Sun X, Feng Y, et al. Dihydromyricetin reverses MRP2-induced multidrug resistance by preventing NF-κB-Nrf2 signaling in colorectal cancer cell[J]. Phytomedicine, 2021, 82: 153414. DOI: 10.1016/j.phymed.2020.153414. doi:10.1016/j.phymed.2020.153414 |
[12] | Chen M, Liang X, Gao C, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer[J]. ACS Nano, 2018, 12(7): 7312-7326. DOI: 10.1021/acsnano.8b03674. doi:10.1021/acsnano.8b03674pmid:29901986 |
[13] | Carvalho RF, do Canto LM, Cury SS, et al. Drug repositioning based on the reversal of gene expression signatures identifies TOP2A as a therapeutic target for rectal cancer[J]. Cancers (Basel), 2021, 13(21): 5492. DOI: 10.3390/cancers13215492. doi:10.3390/cancers13215492 |
[14] | Podolski-Renić A, Banković J, Dinić J, et al. DTA0100, dual topoisomerase Ⅱ and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells[J]. Eur J Pharm Sci, 2017, 105: 159-168. DOI: 10.1016/j.ejps.2017.05.011. doi:S0928-0987(17)30239-7pmid:28502672 |
[15] | Marzi L, Sun Y, Huang SN, et al. The indenoisoquinoline LMP517: a novel antitumor agent targeting both TOP1 and TOP2[J]. Mol Cancer Ther, 2020, 19(8): 1589-1597. DOI: 10.1158/1535-7163.MCT-19-1064. doi:10.1158/1535-7163.MCT-19-1064pmid:32430490 |
[16] | Hientz K, Mohr A, Bhakta-Guha D, et al. The role of p53 in cancer drug resistance and targeted chemotherapy[J]. Oncotarget, 2017, 8(5): 8921-8946. DOI: 10.18632/oncotarget.13475. doi:10.18632/oncotarget.13475pmid:27888811 |
[17] | Ma J, Li L, Yue K, et al. Bromocoumarinplatin, targeting simultaneously mitochondria and nuclei with p53 apoptosis pathway to overcome cisplatin resistance[J]. Bioorg Chem, 2020, 99: 103768. DOI: 10.1016/j.bioorg.2020.103768. doi:10.1016/j.bioorg.2020.103768 |
[18] | Zhou X, Zijlstra SN, Soto-Gamez A, et al. Artemisinin derivatives stimulate DR5-specific TRAIL-induced apoptosis by regulating wildtype P53[J]. Cancers (Basel), 2020, 12(9): 2514. DOI: 10.3390/cancers12092514. doi:10.3390/cancers12092514 |
[19] | Wang Z, Zhan Y, Xu J, et al. β-sitosterol reverses multidrug resistance via BCRP suppression by inhibiting the p53-MDM2 interaction in colorectal cancer[J]. J Agric Food Chem, 2020, 68(12): 3850-3858. DOI: 10.1021/acs.jafc.0c00107. doi:10.1021/acs.jafc.0c00107 |
[20] | Wu T, Wang G, Chen W, et al. Co-inhibition of BET proteins and NF-κB as a potential therapy for colorectal cancer through synergistic inhibiting MYC and FOXM1 expressions[J]. Cell Death Dis, 2018, 9(3): 315. DOI: 10.1038/s41419-018-0354-y. doi:10.1038/s41419-018-0354-ypmid:29472532 |
[21] | Mosca L, Pagano M, Borzacchiello L, et al. S-Adenosylmethionine increases the sensitivity of human colorectal cancer cells to 5-fluorouracil by inhibiting P-glycoprotein expression and NF-κB activation[J]. Int J Mol Sci, 2021, 22(17): 9286. DOI: 10.3390/ijms22179286. doi:10.3390/ijms22179286 |
[22] | Yun UJ, Lee IH, Lee JS, et al. Ginsenoside Rp1, a ginsenoside derivative, augments anti-cancer effects of actinomycin D via downregulation of an AKT-SIRT1 pathway[J]. Cancers (Basel), 2020, 12(3): 605. DOI: 10.3390/cancers12030605. doi:10.3390/cancers12030605 |
[23] | Hu Y, Zhang K, Zhu X, et al. Synergistic inhibition of drug-resistant colon cancer growth with PI3K/mTOR dual inhibitor BEZ235 and nano-emulsioned paclitaxel via reducing multidrug resistance and promoting apoptosis[J]. Int J Nanomedicine, 2021, 16: 2173-2186. DOI: 10.2147/IJN.S290731. doi:10.2147/IJN.S290731 |
[24] | Toyoda M, Watanabe K, Amagasaki T, et al. A phase Ⅰ study of single-agent BEZ235 special delivery system sachet in Japanese patients with advanced solid tumors[J]. Cancer Chemother Pharmacol, 2019, 83(2): 289-299. DOI: 10.1007/s00280-018-3725-2. doi:10.1007/s00280-018-3725-2 |
[25] | ClinicalTrials. gov. Azacitidine and CAPOX in metastatic colorectal cancer[EB/OL]. [2020-04-15] [2022-07-26]. https://clinicaltrials.gov/ct2/show/results/NCT01193517. |
[26] | ClinicalTrials. gov. Study comparing veliparib plus FOLFIRI versus placebo plus FOLFIRI with or without bevacizumab in previously untreated metastatic colorectal cancer[EB/OL]. [2018-11-20] [2022-07-26]. https://clinicaltrials.gov/ct2/show/results/NCT02305758. |
[27] | Huang TH, Wu SY, Huang YJ, et al. The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorige-nesis and colon cancer stem-like cells[J]. Am J Cancer Res, 2017, 7(5): 1227-1237. |
[1] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[6] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[7] | 刘德宝, 孙子雯, 鲁守堂, 徐海东.ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[8] | 安荣, 刘美华, 王佩晨, 王晓慧.Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. |
[9] | 陈卓, 陶俊, 陈琳, 柯晶.外周血miR-194联合粪便miR-143检测对结直肠癌临床筛查的价值[J]. 国际肿瘤学杂志, 2023, 50(5): 268-273. |
[10] | 黄镇, 张蔡羽天, 柯少波, 石薇, 赵文思, 陈永顺.结直肠癌患者术后预后模型的构建[J]. 国际肿瘤学杂志, 2023, 50(3): 157-163. |
[11] | 徐良富, 李袁飞.MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[12] | 刘玉杰, 赵志强, 王子琤.早期结直肠癌患者外周血单个核细胞中TOP2A、ERBB2的水平及其诊断价值[J]. 国际肿瘤学杂志, 2023, 50(12): 717-722. |
[13] | 陶红, 殷红, 罗宏, 陶佳瑜.靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[14] | 刘小洁, 黄俊星.NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. |
[15] | 马小平, 常君丽, 孙星媛, 杨燕萍.长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||