Journal of International Oncology››2021,Vol. 48››Issue (5): 287-291.doi:10.3760/cma.j.cn371439-20200819-00055
• Reviews •Previous ArticlesNext Articles
Yang Jiankai(), Huo Haoran, Sun Guozhu, Fan Zhenzeng, Jiao Baohua
Received:
2020-08-19Revised:
2020-12-25Online:
2021-05-08Published:
2021-06-09Contact:
Yang Jiankai E-mail:yangjiankai8306@163.comSupported by:
Yang Jiankai, Huo Haoran, Sun Guozhu, Fan Zhenzeng, Jiao Baohua. Application of optical coherency tomography in tumor diagnosis and treatment[J]. Journal of International Oncology, 2021, 48(5): 287-291.
[1] | Si P, Honkala A, de la Zerda A, et al. Optical microscopy and coherence tomography of cancer in living subjects[J]. Trends Cancer, 2020,6(3):205-222. DOI: 10.1016/j.trecan.2020.01.008. doi:10.1016/j.trecan.2020.01.008 |
[2] | Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography[J]. Science, 1991,254(5035):1178-1181. DOI: 10.1126/science.1957169. doi:10.1126/science.1957169 |
[3] | Tearney GJ, Boppart SA, Bouma BE, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 1996,21(12):543-545. DOI: 10.1364/ol.21.000543. doi:10.1364/OL.21.000543 |
[4] | 叶鳞泓, 鲍静, 邵毅. 多普勒OCT在眼科疾病的应用进展[J]. 眼科新进展, 2017(7):680-683. DOI: 10.13389/j.cnki.rao.2017.0173. |
[5] | Shields CL, Manalac J, Das C, et al. Review of spectral domain enhanced depth imaging optical coherence tomography of tumors of the choroid[J]. Indian J Ophthalmol, 2015,63(2):117-121. DOI: 10.4103/0301-4738.154377. doi:10.4103/0301-4738.154377pmid:25827541 |
[6] | Hussain R, Anantharaman G, Rajesh B, et al. Real-time in vivo micromorphology and histopathology of choroidal osteoma using enhanced depth imaging[J]. Indian J Ophthalmol, 2015,63(5):453-455. DOI: 10.4103/0301-4738.159887. doi:10.4103/0301-4738.159887pmid:26139810 |
[7] | Gong C, Shen M, Zheng X, et al. Precise delineation and tumor localization based on novel image registration strategy between optical coherence tomography and computed tomography in the radiotherapy of intraocular cancer[J]. Phys Med Biol, 2019,64(12):125009. DOI: 10.1088/1361-6560/ab0ddf. doi:10.1088/1361-6560/ab0ddf |
[8] | Shinohara K, Tanaka N, Jonas JB, et al. Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma[J]. Ophthalmology, 2018,125(10):1575-1586. DOI: 10.1016/j.ophtha.2018.03.053. doi:S0161-6420(18)30116-7pmid:29716783 |
[9] | Tearney GJ, Brezinski ME, Bouma BE, et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997,276(5321):2037-2039. DOI: 10.1126/science.276.5321.2037. doi:10.1126/science.276.5321.2037 |
[10] | Böhringer HJ, Lankenau E, Rohde V, et al. Optical coherence tomography for experimental neuroendoscopy[J]. Minim Invasive Neurosurg, 2006,49(5):269-275. DOI: 10.1055/s-2006-954574. doi:10.1055/s-2006-954574 |
[11] | Kim S, Lee C, Kim JY, et al. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography[J]. J Biomed Opt, 2016,21(10):106001. DOI: 10.1117/1.JBO.21.10.106001. doi:10.1117/1.JBO.21.10.106001 |
[12] | Wani S, Rubenstein JH, Vieth M, et al. Adversarial convolutional network for esophageal tissue segmentation on OCT images[J]. Biomed Opt Express, 2020,11(6):3095-3110. DOI: 10.1364/BOE.394715. doi:10.1364/BOE.394715 |
[13] | Testoni PA, Mangiavillano B. Advanced imaging for Barrett's eso-phagus and early neoplasia: surface and subsurface imaging for diagnosis and management[J]. Gastroenterology, 2016,151(5):822-835. DOI: 10.1053/j.gastro.2016.09.040. doi:10.1053/j.gastro.2016.09.040 |
[14] | 罗斯特, 范应威, 常玮, 等. 扫频光学相干层析成像应用于判断黏液型胃癌边界区域[J]. 光学学报, 2018,38(5):221-226. DOI: 10.3788/AOS201838.0517001. |
[15] | Yu H, Shen JH, Shah RJ, et al. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps[J]. Biomed Opt Express, 2015,6(2):457-472. DOI: 10.1364/BOE.6.000457. doi:10.1364/BOE.6.000457 |
[16] | Zeng Y, Xu S, Chapman WC, et al. Real-time colorectal cancer diagnosis using PR-OCT with deep learning[J]. Theranostics, 2020,10(6):2587-2596. DOI: 10.7150/thno.40099. doi:10.7150/thno.40099 |
[17] | Li Z, Tang Q, Dickfeld T, et al. Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical cohe-rence tomography[J]. J Biomed Opt, 2018,23(7):1-5. DOI: 10.1117/1.JBO.23.7.076004. |
[18] | Almog IF, Chen FD, Senova S, et al. Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging[J]. J Biophotonics, 2020,13(2):e201960083. DOI: 10.1002/ jbio.201960083. |
[19] | Valdés PA, Roberts DW, Lu FK, et al. Optical technologies for intraoperative neurosurgical guidance[J]. Neurosurg Focus, 2016,40(3):E8. DOI: 10.3171/2015.12.FOCUS15550. |
[20] | Yashin KS, Kiseleva EB, Moiseev AA, et al. Quantitative nontumorous and tumorous human brain tissue assessment using microstructural co- and cross-polarized optical coherence tomography[J]. Sci Rep, 2019,9(1):2024. DOI: 10.1038/s41598-019-38493-y. doi:10.1038/s41598-019-38493-y |
[21] | Lenz M, Krug R, Dillmann C, et al. Automated differentiation between meningioma and healthy brain tissue based on optical cohe-rence tomography ex vivo images using texture features[J]. Biomed Opt, 2018,23(7):1-7. DOI: 10.1117/1.JBO.23.7.071205. |
[22] | Yu X, Hu C, Zhang W, et al. Feasibility evaluation of micro-optical coherence tomography (μOCT) for rapid brain tumor type and grade discriminations: μOCT images versus pathology[J]. BMC Med Imaging, 2019,19(1):102. DOI: 10.1186/s12880-019-0405-6. doi:10.1186/s12880-019-0405-6 |
[23] | Juarez-Chambi RM, Kut C, Rico-Jimenez JJ, et al. AI-assisted in situ detection of human glioma infiltration using a novel computa-tional method for optical coherence tomography[J]. Clin Cancer Res, 2019,25(21):6329-6338. DOI: 10.1158/1078-0432.CCR-19-0854. doi:10.1158/1078-0432.CCR-19-0854pmid:31315883 |
[24] | Fan YW, Xia Y, Zhang XR, et al. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics[J]. Biosci Trends, 2018,12(1):12-23. DOI: 10.5582/bst.2017.01258. doi:10.5582/bst.2017.01258 |
[25] | van Manen L, Dijkstra J, Boccara C, et al. The clinical usefulness of optical coherence tomography during cancer interventions[J]. J Cancer Res Clin Oncol, 2018,144(10):1967-1990. DOI: 10.1007/s00432-018-2690-9. doi:10.1007/s00432-018-2690-9 |
[26] | Liang CP, Yang B, Kim IK, et al. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography[J]. Biomed Opt, 2013,18(4):046015. DOI: 10.1117/1.JBO.18.4.040506. |
[27] | Xi J, Chen Y, Li X. Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging[J]. Biomed Opt Express, 2013,4(6):842-851. DOI: 10.1364/BOE.4.000842. doi:10.1364/BOE.4.000842 |
[28] | Yashin KS, Kiseleva EB, Gubarkova EV, et al. Cross-polarization optical coherence tomography for brain tumor imaging[J]. Front Oncol, 2019,9:201. DOI: 10.3389/fonc.2019.00201. doi:10.3389/fonc.2019.00201 |
[29] | Li YQ, Chiu K, Liu XR, et al. Polarization-sensitive optical cohe-rence tomography for brain tumor characterization[J]. Biophys J, 2019,117(7):1179-1188. DOI: 10.1016/j.bpj.2019.08.010. doi:10.1016/j.bpj.2019.08.010 |
[30] | Fabelo C, Selmic LE, Huang PC, et al. Evaluating optical cohe-rence tomography for surgical margin assessment of canine mammary tumors[J]. Vet Comp Oncol, 2020: 10.1111/vco.12632. DOI: 10.1111/vco.12632. |
[31] | Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology[J]. J Biomed Opt, 2017,22(12):1-23. DOI: 10.1117/1.JBO.22.12.121711. |
[32] | Canavesi C, Rolland JP. Ten years of gabor-domain optical cohe-rence microscopy[J]. Appl Sci (Basel), 2019,9(12):2565. DOI: 10.3390/app9122565. |
[33] | Mesa KJ, Selmic LE, Pande P, et al. Intraoperative optical cohe-rence tomography for soft tissue sarcoma differentiation and margin identification[J]. Lasers Surg Med, 2017,49(3):240-248. DOI: 10.1002/lsm.22633. doi:10.1002/lsm.22633 |
[34] | Kut C, Chaichana KL, Xi J, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Sci Transl Med, 2015, 7(292): 292ra100. DOI: 10.1126/scitranslmed.3010611. |
[35] | Fan Y, Zhang B, Chang W, et al. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment[J]. Int J Comput Assist Radiol Surg, 2018,13(3):411-423. DOI: 10.1007/s11548-017-1664-8. doi:10.1007/s11548-017-1664-8 |
[36] | Plekhanov AA, Sirotkina MA, Sovetsky AA, et al. Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by optical coherence elastography[J]. Sci Rep, 2020,10(1):11781. DOI: 10.1038/s41598-020-68631-w. doi:10.1038/s41598-020-68631-w |
[37] | Yuan W, Kut C, Liang WX, et al. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection[J]. Sci Rep, 2017,7:44909. DOI: 10.1038/srep44909. doi:10.1038/srep44909 |
[38] | Zhu M, Chang W, Jing LK, et al. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery[J]. The-ranostics, 2019,9(10):2827-2842. DOI: 10.7150/thno.33823. |
[39] | Zeng Y, Xu S, Chapman WC Jr, et al. Real-time colorectal cancer diagnosis using PR-OCT with deep learning[J]. Theranostics, 2020,10(6):2587-2596. DOI: 10.7150/thno.40099. doi:10.7150/thno.40099 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||