Journal of International Oncology››2022,Vol. 49››Issue (9): 543-545.doi:10.3760/cma.j.cn371439-20220623-00105
• Reviews •Previous ArticlesNext Articles
Received:
2022-06-23Revised:
2022-07-27Online:
2022-09-08Published:
2022-10-21Contact:
Zhang Yi E-mail:syzi@163.comSong Yuli, Zhang Yi. Role of P4HA2 in promoting cancer progression[J]. Journal of International Oncology, 2022, 49(9): 543-545.
[1] | Shi R, Gao S, Zhang J, et al. Collagen prolyl 4-hydroxylases modify tumor progression[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(7): 805-814. DOI: 10.1093/abbs/gmab065. doi:10.1093/abbs/gmab065 |
[2] | Kisoda S, Shao W, Fujiwara N, et al. Prognostic value of partial EMT-related genes in head and neck squamous cell carcinoma by a bioinformatic analysis[J]. Oral Dis, 2020, 26(6): 1149-1156. DOI: 10.1111/odi.13351. doi:10.1111/odi.13351 |
[3] | Shang C, Huang J, Guo H. Identification of an metabolic related risk signature predicts prognosis in cervical cancer and correlates with immune infiltration[J]. Front Cell Dev Biol, 2021, 9: 677831. DOI: 10.3389/fcell.2021.677831. doi:10.3389/fcell.2021.677831 |
[4] | Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview[J]. Int J Cancer, 2021. DOI: 10.1002/ijc.33588. doi:10.1002/ijc.33588 |
[5] | Rakovitch E, Sutradhar R, Nofech-Mozes S, et al. 21-gene assay and breast cancer mortality in ductal carcinoma in situ[J]. J Natl Cancer Inst, 2021, 113(5): 572-579. DOI: 10.1093/jnci/djaa179. doi:10.1093/jnci/djaa179pmid:33369631 |
[6] | Toss MS, Miligy IM, Gorringe KL, et al. Prolyl-4-hydroxylase a subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS)[J]. Br J Cancer, 2018, 119(12): 1518-1526. DOI: 10.1038/s41416-018-0337-x. doi:10.1038/s41416-018-0337-x |
[7] | Agahozo MC, van Bockstal M, Westenend PJ, et al. Stromal changes are associated with high P4HA2 expression in ductal carcinoma in situ of the breast[J]. J Mammary Gland Biol Neoplasia, 2021, 26(4): 367-375. DOI: 10.1007/s10911-021-09504-4. doi:10.1007/s10911-021-09504-4 |
[8] | Li M, Wang Q, Zheng Q, et al. Prognostic and diagnostic roles of prolyl 4-hydroxylase subunit α members in breast cancer[J]. Biomark Med, 2021, 15(13): 1085-1095. DOI: 10.2217/bmm-2020-0323. doi:10.2217/bmm-2020-0323pmid:34387118 |
[9] | Kay EJ, Paterson K, Riera-Domingo C, et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix[J]. Nat Metab, 2022, 4(6): 693-710. DOI: 10.1038/s42255-022-00582-0. doi:10.1038/s42255-022-00582-0pmid:35760868 |
[10] | Xiong G, Deng L, Zhu J, et al. Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition[J]. BMC Cancer, 2014, 14: 1. DOI: 10.1186/1471-2407-14-1. doi:10.1186/1471-2407-14-1pmid:24383403 |
[11] | Liu M, Liu Y, Deng L, et al. Transcriptional profiles of different states of cancer stem cells in triple-negative breast cancer[J]. Mol Cancer, 2018, 17(1): 65. DOI: 10.1186/s12943-018-0809-x. doi:10.1186/s12943-018-0809-xpmid:29471829 |
[12] | Wang J, Wang Y, Xing P, et al. Development and validation of a hypoxia-related prognostic signature for breast cancer[J]. Oncol Lett, 2020, 20(2): 1906-1914. DOI: 10.3892/ol.2020.11733. doi:10.3892/ol.2020.11733pmid:32724434 |
[13] | Gilkes DM, Bajpai S, Chaturvedi P, et al. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts[J]. J Biol Chem, 2013, 288(15): 10819-10829. DOI: 10.1074/jbc.M112.442939. doi:10.1074/jbc.M112.442939pmid:23423382 |
[14] | Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications[J]. Mol Aspects Med, 2019, 65: 2-15. DOI: 10.1016/j.mam.2018.06.003. doi:S0098-2997(18)30038-4pmid:29958900 |
[15] | Lei Y, Yan W, Lin Z, et al. Comprehensive analysis of partial epithelial mesenchymal transition-related genes in hepatocellular carcinoma[J]. J Cell Mol Med, 2021, 25(1): 448-462. DOI: 10.1111/jcmm.16099. doi:10.1111/jcmm.16099pmid:33215860 |
[16] | Feng GX, Li J, Yang Z, et al. Hepatitis B virus X protein promotes the development of liver fibrosis and hepatoma through downregulation of miR-30e targeting P4HA2 mRNA[J]. Oncogene, 2017, 36(50): 6895-6905. DOI: 10.1038/onc.2017.291. doi:10.1038/onc.2017.291pmid:28846110 |
[17] | Yi M, Feng X, Peng W, et al. Aspirin for the prevention of hepatocellular carcinoma: an updated meta-analysis with particular focus on patients with chronic liver disease[J]. Eur J Clin Pharmacol, 2022, 78(4): 647-656. DOI: 10.1007/s00228-021-03247-1. doi:10.1007/s00228-021-03247-1pmid:35032181 |
[18] | Wang T, Fu X, Jin T, et al. Aspirin targets P4HA2 through inhibiting NF-κB and LMCD1-AS1/let-7g to inhibit tumour growth and collagen deposition in hepatocellular carcinoma[J]. EBioMedicine, 2019, 45: 168-180. DOI: 10.1016/j.ebiom.2019.06.048. doi:S2352-3964(19)30429-3pmid:31278071 |
[19] | Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, et al. Understanding cervical cancer through proteomics[J]. Cells, 2021, 10(8): 1854. DOI: 10.3390/cells10081854. doi:10.3390/cells10081854 |
[20] | Zhang Z, Chen F, Li S, et al. ERG the modulates Warburg effect and tumor progression in cervical cancer[J]. Biochem Biophys Res Commun, 2020, 522(1): 191-197. DOI: 10.1016/j.bbrc.2019.11.079. doi:10.1016/j.bbrc.2019.11.079 |
[21] | Rashmi R, Huang X, Floberg JM, et al. Radioresistant cervical cancers are sensitive to inhibition of glycolysis and redox metabolism[J]. Cancer Res, 2018, 78(6): 1392-1403. DOI: 10.1158/0008-5472.CAN-17-2367. doi:10.1158/0008-5472.CAN-17-2367pmid:29339540 |
[22] | Li Q, Wang Q, Zhang Q, et al. Collagen prolyl 4-hydroxylase 2 predicts worse prognosis and promotes glycolysis in cervical cancer[J]. Am J Transl Res, 2019, 11(11): 6938-6951. pmid:31814898 |
[23] | Cao Y, Han Q, Li J, et al. P4HA2 contributes to cervical cancer progression via inducing epithelial-mesenchymal transition[J]. J Cancer, 2020, 11(10): 2788-2799. DOI: 10.7150/jca.38401. doi:10.7150/jca.38401pmid:32226497 |
[24] | Mody MD, Rocco JW, Yom SS, et al. Head and neck cancer[J]. Lancet, 2021, 398(10318): 2289-2299. DOI: 10.1016/S0140-6736(21)01550-6. doi:10.1016/S0140-6736(21)01550-6pmid:34562395 |
[25] | Lee DY, Abraham J, Ross E, et al. Rapid recurrence in head and neck cancer: underappreciated problem with poor outcome[J]. Head Neck, 2021, 43(1): 212-222. DOI: 10.1002/hed.26479. doi:10.1002/hed.26479 |
[26] | Yang XH, Zhang XX, Jing Y, et al. Amino acids signatures of distance-related surgical margins of oral squamous cell carcinoma[J]. EBioMedicine, 2019, 48: 81-91. DOI: 10.1016/j.ebiom.2019.10.005. doi:10.1016/j.ebiom.2019.10.005 |
[27] | Reis PP, Tokar T, Goswami RS, et al. A 4-gene signature from histologically normal surgical margins predicts local recurrence in patients with oral carcinoma: clinical validation[J]. Sci Rep, 2020, 10(1): 1713. DOI: 10.1038/s41598-020-58688-y. doi:10.1038/s41598-020-58688-ypmid:32015424 |
[28] | Schmidt S, Linge A, Zwanenburg A, et al. Development and validation of a gene signature for patients with head and neck carcinomas treated by postoperative Radio(chemo) therapy[J]. Clin Cancer Res, 2018, 24(6): 1364-1374. DOI: 10.1158/1078-0432.CCR-17-2345. doi:10.1158/1078-0432.CCR-17-2345pmid:29298797 |
[29] | Ghouzlani A, Kandoussi S, Tall M, et al. Immune checkpoint inhibitors in human glioma microenvironment[J]. Front Immunol, 2021, 12: 679425. DOI: 10.3389/fimmu.2021.679425. doi:10.3389/fimmu.2021.679425 |
[30] | Thakur A, Faujdar C, Sharma R, et al. Glioblastoma: current status, emerging targets, and recent advances[J]. J Med Chem, 2022, 65(13): 8596-8685. DOI: 10.1021/acs.jmedchem.1c01946. doi:10.1021/acs.jmedchem.1c01946pmid:35786935 |
[31] | Zhang M, Zhou Z, Liu Z, et al. Exploring the potential biomarkers for prognosis of glioblastoma via weighted gene co-expression network analysis[J]. PeerJ, 2022, 10: e12768. DOI: 10.7717/peerj.12768. doi:10.7717/peerj.12768 |
[32] | Lin J, Jiang L, Wang X, et al. P4HA2 promotes Epithelial-to-mesenchymal transition and glioma malignancy through the collagen-dependent PI3K/AKT pathway[J]. J Oncol, 2021, 2021: 1406853. DOI: 10.1155/2021/1406853. doi:10.1155/2021/1406853 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua.Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer[J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing.Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients[J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang.Role of PFDN and its subunits in tumorigenesis and tumor development[J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun.Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei.Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm[J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin.Study on the clinical relationship between inflammatory burden index and gastric cancer[J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||