Journal of International Oncology››2023,Vol. 50››Issue (3): 169-173.doi:10.3760/cma.j.cn371439-20221121-00033
• Reviews •Previous ArticlesNext Articles
Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai()
Received:
2022-11-21Revised:
2023-01-01Online:
2023-03-08Published:
2023-04-12Contact:
Wang Kai, Email:
Supported by:
Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy[J]. Journal of International Oncology, 2023, 50(3): 169-173.
[1] | Pfannstiel C, Strissel PL, Chiappinelli KB, et al. The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes[J]. Cancer Immunol Res, 2019, 7(6): 923-938. DOI: 10.1158/2326-6066.CIR-18-0758. doi:10.1158/2326-6066.CIR-18-0758pmid:30988029 |
[2] | Vaghjiani RG, Skitzki JJ. Tertiary lymphoid structures as mediators of immunotherapy response[J]. Cancers (Basel), 2022, 14(15): 3748. DOI: 10.3390/cancers14153748. doi:10.3390/cancers14153748 |
[3] | Zhang Y, Wang F, Sun HR, et al. Apatinib combined with PD-L1 blockade synergistically enhances antitumor immune responses and promotes HEV formation in gastric cancer[J]. J Cancer Res Clin Oncol, 2021, 147(8): 2209-2222. DOI: 10.1007/s00432-021-03633-3. doi:10.1007/s00432-021-03633-3pmid:33891173 |
[4] | Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J]. Nature, 2020, 577(7791): 561-565. DOI: 10.1038/s41586-019-1914-8. doi:10.1038/s41586-019-1914-8 |
[5] | Jia W, Zhang T, Yao Q, et al. Tertiary lymphatic structures in primary hepatic carcinoma: controversy cannot overshadow hope[J]. Front Immunol, 2022, 13: 870458. DOI: 10.3389/fimmu.2022.870458. doi:10.3389/fimmu.2022.870458 |
[6] | Dieudé M, Kaci I, Hébert MJ. The impact of programmed cell death on the formation of tertiary lymphoid structures[J]. Front Immunol, 2021, 12: 696311. DOI: 10.3389/fimmu.2021.696311. doi:10.3389/fimmu.2021.696311 |
[7] | Schumacher TN, Thommen DS. Tertiary lymphoid structures in cancer[J]. Science, 2022, 375(6576): eabf9419. DOI: 10.1126/science.abf9419. doi:10.1126/science.abf9419 |
[8] | Koning JJ, Mebius RE. Stromal cells and immune cells involved in formation of lymph nodes and their niches[J]. Curr Opin Immunol, 2020, 64: 20-25. DOI: 10.1016/j.coi.2020.03.003. doi:S0952-7915(20)30026-1pmid:32325389 |
[9] | KleinJan A, van Nimwegen M, Leman K, et al. Involvement of dendritic cells and Th17 cells in induced tertiary lymphoid structures in a chronic beryllium disease mouse model[J]. Mediators Inflamm, 2021, 2021: 8845966. DOI: 10.1155/2021/8845966. doi:10.1155/2021/8845966 |
[10] | Coleby R, Lucchesi D, Pontarini E, et al. Stepwise changes in the murine salivary gland immune response during virally-induced ectopic lymphoid structure formation[J]. Clin Exp Rheumatol, 2021, 39 Suppl 133(6):39-48. DOI: 10.55563/clinexprheumatol/gb7pfc. doi:10.55563/clinexprheumatol/gb7pfcpmid:34596023 |
[11] | Hill DG, Ward A, Nicholson LB, et al. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures[J]. Cytokine, 2021, 146: 155650. DOI: 10.1016/j.cyto.2021.155650. doi:10.1016/j.cyto.2021.155650 |
[12] | N J, J T, Sl N, et al. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies[J]. Oncoimmunology, 2021, 10(1): 1900508. DOI: 10.1080/2162402X.2021.1900508. doi:10.1080/2162402X.2021.1900508 |
[13] | Simmons S, Sasaki N, Umemoto E, et al. High-endothelial cell-derived S1P regulates dendritic cell localization and vascular integrity in the lymph node[J]. Elife, 2019, 8: e41239. DOI: 10.7554/eLife.41239. doi:10.7554/eLife.41239 |
[14] | Tooley KA, Escobar G, Anderson AC. Spatial determinants of CD8+T cell differentiation in cancer[J]. Trends Cancer, 2022, 8(8): 642-654. DOI: 10.1016/j.trecan.2022.04.003. doi:10.1016/j.trecan.2022.04.003 |
[15] | Asrir A, Tardiveau C, Coudert J, et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy[J]. Cancer Cell, 2022, 40(3): 318-334. e9. DOI: 10.1016/j.ccell.2022.01.002. doi:10.1016/j.ccell.2022.01.002pmid:35120598 |
[16] | Dangaj D, Bruand M, Grimm AJ, et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors[J]. Cancer Cell, 2019, 35(6): 885-900. e10. DOI: 10.1016/j.ccell.2019.05.004. doi:S1535-6108(19)30242-9pmid:31185212 |
[17] | Woods AN, Wilson AL, Srivinisan N, et al. Differential expression of homing receptor ligands on tumor-associated vasculature that control CD8 effector t-cell entry[J]. Cancer Immunol Res, 2017, 5(12): 1062-1073. DOI: 10.1158/2326-6066.CIR-17-0190. doi:10.1158/2326-6066.CIR-17-0190pmid:29097419 |
[18] | Patil NS, Nabet BY, Müller S, et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer[J]. Cancer Cell, 2022, 40(3): 289-300. e4. DOI: 10.1016/j.ccell.2022.02.002. doi:10.1016/j.ccell.2022.02.002pmid:35216676 |
[19] | Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral Tcf1+PD-1+CD8+T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy[J]. Immunity, 2019, 50(1): 195-211. e10. DOI: 10.1016/j.immuni.2018.12.021. doi:S1074-7613(18)30569-7pmid:30635237 |
[20] | Kurtulus S, Madi A, Escobar G, et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+tumor-infiltrating T cells[J]. Immunity, 2019, 50(1): 181-194. e6. DOI: 10.1016/j.immuni.2018.11.014. doi:S1074-7613(18)30522-3pmid:30635236 |
[21] | Di Pilato M, Kfuri-Rubens R, Pruessmann JN, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment[J]. Cell, 2021, 184(17): 4512-4530. e22. DOI: 10.1016/j.cell.2021.07.015. doi:10.1016/j.cell.2021.07.015pmid:34343496 |
[22] | Mustapha R, Ng K, Monypenny J, et al. Insights into unveiling a potential role of tertiary lymphoid structures in metastasis[J]. Front Mol Biosci, 2021, 8: 661516. DOI: 10.3389/fmolb.2021.661516. doi:10.3389/fmolb.2021.661516 |
[23] | Kuwabara S, Tsuchikawa T, Nakamura T, et al. Prognostic rele-vance of tertiary lymphoid organs following neoadjuvant chemoradiotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Sci, 2019, 110(6): 1853-1862. DOI: 10.1111/cas.14023. doi:10.1111/cas.14023 |
[24] | Boivin G, Kalambaden P, Faget J, et al. Cellular composition and contribution of tertiary lymphoid structures to tumor immune infiltration and modulation by radiation therapy[J]. Front Oncol, 2018, 8: 256. DOI: 10.3389/fonc.2018.00256. doi:10.3389/fonc.2018.00256pmid:30038899 |
[25] | Lin Q, Tao P, Wang J, et al. Tumor-associated tertiary lymphoid structure predicts postoperative outcomes in patients with primary gastrointestinal stromal tumors[J]. Oncoimmunology, 2020, 9(1): 1747339. DOI: 10.1080/2162402X.2020.1747339. doi:10.1080/2162402X.2020.1747339 |
[26] | Inoue H, Horii R, Ito Y, et al. Tumor-infiltrating lymphocytes affect the efficacy of trastuzumab-based treatment in human epidermal growth factor receptor 2-positive breast cancer[J]. Breast Cancer, 2018, 25(3): 268-274. DOI: 10.1007/s12282-017-0822-8. doi:10.1007/s12282-017-0822-8pmid:29185202 |
[27] | Qi Z, Xu Z, Zhang L, et al. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment[J]. Nat Commun, 2022, 13(1): 182. DOI: 10.1038/s41467-021-27833-0. doi:10.1038/s41467-021-27833-0pmid:35013322 |
[28] | van Dijk N, Gil-Jimenez A, Silina K, et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial[J]. Nat Med, 2020, 26(12): 1839-1844. DOI: 10.1038/s41591-020-1085-z. doi:10.1038/s41591-020-1085-zpmid:33046870 |
[29] | Vanhersecke L, Brunet M, Guégan JP, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression[J]. Nat Cancer, 2021, 2(8): 794-802. DOI: 10.1038/s43018-021-00232-6. doi:10.1038/s43018-021-00232-6 |
[30] | Gray KD, McCloskey JE, Vedvyas Y, et al. PD1 blockade enhances ICAM1-directed CAR T therapeutic efficacy in advanced thyroid cancer[J]. Clin Cancer Res, 2020, 26(22): 6003-6016. DOI: 10.1158/1078-0432.CCR-20-1523. doi:10.1158/1078-0432.CCR-20-1523 |
[31] | Zhang W, Huang Q, Xiao W, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis[J]. Front Immunol, 2020, 11: 18. DOI: 10.3389/fimmu.2020.00018. doi:10.3389/fimmu.2020.00018pmid:32082311 |
[32] | Li H, Wang J, Liu H, et al. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(4): 3451-3472. DOI: 10.18632/aging.102821. doi:10.18632/aging.102821 |
[33] | Ding GY, Ma JQ, Yun JP, et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma[J]. J Hepatol, 2022, 76(3): 608-618. DOI: 10.1016/j.jhep.2021.10.030. doi:10.1016/j.jhep.2021.10.030 |
[34] | Li H, Liu H, Fu H, et al. Peritumoral tertiary lymphoid structures correlate with protective immunity and improved prognosis in patients with hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 648812. DOI: 10.3389/fimmu.2021.648812. doi:10.3389/fimmu.2021.648812 |
[35] | Park HS, Kim YM, Kim S, et al. High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer[J]. J Immunother Cancer, 2021, 9(10): e003353. DOI: 10.1136/jitc-2021-003353. doi:10.1136/jitc-2021-003353 |
[36] | Zhan Z, Shi-Jin L, Yi-Ran Z, et al. High endothelial venules proportion in tertiary lymphoid structure is a prognostic marker and correlated with anti-tumor immune microenvironment in colorectal cancer[J]. Ann Med, 2023, 55(1): 114-126. DOI: 10.1080/07853890.2022.2153911. doi:10.1080/07853890.2022.2153911pmid:36503344 |
[37] | J Gunderson A, Rajamanickam V, Bui C, et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer[J]. Oncoimmunology, 2021, 10(1): 1900635. DOI: 10.1080/2162402X.2021.1900635. doi:10.1080/2162402X.2021.1900635 |
[38] | Ruffin AT, Cillo AR, Tabib T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma[J]. Nat Commun, 2021, 12(1): 3349. DOI: 10.1038/s41467-021-23355-x. doi:10.1038/s41467-021-23355-xpmid:34099645 |
[39] | Meylan M, Petitprez F, Lacroix L, et al. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules[J]. Clin Cancer Res, 2020, 26(16): 4381-4389. DOI: 10.1158/1078-0432.CCR-19-2929. doi:10.1158/1078-0432.CCR-19-2929pmid:32269054 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei.Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study[J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[3] | Wang Kun, Zhou Zhongxin, Zang Qiwei.Predictive value of serum TGF-β1 and VEGF levels in patients with non-small cell lung cancer after single-port thoracoscopic radical resection[J]. Journal of International Oncology, 2024, 51(4): 198-203. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | Yan Aiting, Wang Cuizhu, Liu Chungui, Lu Xiaomin.Clinical efficacy and safety of camrelizumab and sintilimab in the treatment of advanced non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(3): 137-142. |
[6] | Jiang Xi, Wu Yongcun, Liang Yan, Chu Li, Duan Yingxin, Wang Lijun, Huo Junjie.Impact of pembrolizumab combined with chemotherapy on angiogenesis and circulating endothelial cells in patients with advanced non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(2): 89-94. |
[7] | Gao Xinyu, Li Zhenjiang, Sun Hongfu, Han Dan, Zhao Qian, Liu Chengxin, Huang Wei.Clinical application of MR-guided radiotherapy based on MR-linac in esophageal cancer patients[J]. Journal of International Oncology, 2024, 51(1): 37-42. |
[8] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie.Research progress of myeloid-derived suppressor cells in tumor angiogenesis[J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[9] | Gu Huayan, Zhu Teng, Guo Guilong.Breast microbiota and breast cancer: present and future[J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[10] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng.Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance[J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[11] | Ding Hao, Ying Jintao, Fu Maoyong.Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[12] | Zhou Ting, Xu Shaohua, Mei Lin.Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer[J]. Journal of International Oncology, 2023, 50(3): 144-149. |
[13] | Xu Liangfu, Li Yuanfei.Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[14] | Zhu Yi, Chen Jian.Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects[J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[15] | Wang Bing, Wang Aifu, Liu Wenshu, Fan Jiaojiao, Tian Weicheng, Wang Weili, Liu Boyu.The efficacy and safety of recombinant human thrombopoietin in the treatment of thrombocytopenia caused by tumor radiotherapy[J]. Journal of International Oncology, 2023, 50(11): 661-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||