Journal of International Oncology››2013,Vol. 40››Issue (12): 883-885.doi:10.3760/cma.j.issn.1673-422X.2013.12.001
SUN Jie, MENG Xiang-Jun
Online:
2013-12-10Published:
2013-12-26Contact:
MENG Xiang-Jun E-mail:xiangjunmenggoodman@hotmail.comSUN Jie, MENG Xiang-Jun. Abnormal glycometabolism in tumor cells[J]. Journal of International Oncology, 2013, 40(12): 883-885.
[1] El Mjiyad N, CaroMaldonado A, RamirezPeinado S, et al. Sugarfree approaches to cancer cell killing. Oncogene, 2011, 30(3): 253-264. [2] Levine AJ, PuzioKuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 2010, 330(6009): 1340-1344. [3] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646-674. [4] Luo W, Zhong J, Chang R, et al. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxiainducible factor (HIF)1alpha but Not HIF2alpha. J Biol Chem, 2010, 285(6): 3651-3663. [5] Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 2011, 27: 441-464. [6] Koh MY, Lemos R Jr, Liu X, et al. The hypoxiaassociated factor switches cells from HIF1α to HIF2αdependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res, 2011, 71(11): 4015-4027. [7] Koppenol WH, Bounds PL, Dang CV. Otto Warburg′s contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011, 11(5): 325-337. [8] Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor′s dilemma?. Biochim Biophys Acta, 2011, 1807(6): 552-561. [9] Smolkova K, PlecitaHlavata L, Bellance N, et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol, 2011, 43(7): 950-968. [10] MorenoSanchez R, RodriguezEnriquez S, Saavedra E, et al. The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells?. Bilfactors, 2009, 35(2): 209-225. [11] Dang CV. Links between metabolism and cancer. Genes Dev, 2012, 26(9): 877-890. [12] Gao P, Tchernyshyov I, Chang TC, et al. cMyc suppression of miR23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239): 762-765. [13] Semenza GL. HIF1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev, 2010, 20(1): 51-56. [14] Green ML, Pisano MM, Prough RA, et al. Release of targeted p53 from the mitochondrion as an early signal during mitochondrial dysfunction. Cell Signal, 2013, 25(12): 2383-2390. [15] Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009, 23(5): 537-548. [16] Liu P, Cheng H, Santiago S, et al. Oncogenic PIK3CAdriven mammary tumors frequently recur via PI3K pathwaydependent and PI3K pathwayindependent mechanisms. Nat Med, 2011, 17(9): 1116-1120. [17] Ilic N, Utermark T, Widlund HR, et al. PI3Ktargeted therapy can be evaded by gene amplification along the MYCeukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA, 2011, 108(37): E699-708. [18] Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin, 2013, 45(1): 18-26. [19] Sun Q, Chen X, Ma J, et al. Mammalian target of rapamycin upregulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA, 2011, 108(10): 4129-4134. [20] Zha X, Wang F, Wang Y, et al. Lactate dehydrogenase B is critical for hyperactive mTORmediated tumorigenesis. Cancer Res, 2011, 71(1): 13-18. [21] Hirasawa T, Miyazawa M, Yasuda M, et al. Alterations of hypoxiainduced factor signaling pathway due to mammalian target of rapamycin (mTOR) suppression in ovarian clear cell adenocarcinoma: in vivo and in vitro explorations for clinical trial. Int J Gynecol Cancer, 2013, 23(7): 1210-1218. [22] Upadhyay M, Samal J, Kandpal M, et al. The Warburg effect: insights from the past decade. Pharmacol Ther, 2013, 137(3): 318-330. [23] Hardee ME, Dewhirst MW, Agarwal N, et al. Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr Mol Med, 2009, 9(4): 435-441. [24] Gammon L, Biddle A, Heywood HK, et al. Subsets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One, 2013, 8(4): e62493. [25] Icard P, Lincet H. The cancer tumor: a metabolic parasite?. Bull Cancer, 2013, 100(5): 427-433. [26] Chiu M, Ottaviani L, Bianchi MG, et al. Towards a metabolic therapy of cancer?. Acta Biomed, 2012, 83(3): 168-176. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua.Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer[J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing.Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients[J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang.Role of PFDN and its subunits in tumorigenesis and tumor development[J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun.Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei.Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm[J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin.Study on the clinical relationship between inflammatory burden index and gastric cancer[J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||