Journal of International Oncology››2014,Vol. 41››Issue (12): 899-901.doi:10.3760/cma.j.issn.1673-422X.2014.12.007
Previous ArticlesNext Articles
Online:
2014-12-24Published:
2015-02-02Contact:
Wu Bin, Email: wubintop@sina.cnWU Bin, XIA Liang. Progression of brain tumor stem cell markers[J]. Journal of International Oncology, 2014, 41(12): 899-901.
[1] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645648. [2] Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood, 1997, 90(12): 50025012. [3] Shmelkov SV, Jun L, St Clair R, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133[J]. Blood, 2004, 103(6): 20552061. [4] Yu Y, Flint A, Dvorin EL, et al. AC1332, a novel isoform of human AC133 stem cell antigen[J]. J Biol Chem, 2002, 277(23): 2071120716. [5] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432(7015): 396401. [6] Singh S, Dirks PB. Brain tumor stem cells: identification and concepts[J]. Neurosurg Clin N Am, 2007, 18(1): 3138, viii. [7] He H, Li MW, Niu CS. The pathological characteristics of glioma stem cell niches[J]. J Clin Neurosci, 2012, 19(1): 121127. [8] Kahlert UD, Bender NO, Maciaczyk D, et al. CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cellrelated gene expression profile in in vitro propagated glioblastoma multiformederived cell line with a PNETlike component[J]. Folia Neuropathol, 2012, 50(4): 357368. [9] Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756760. [10] Neuzil J, Tomasetti M, Zhao Y, et al. Vitamin E analogs, a novel group of "mitocans," as anticancer agents: the importance of being redoxsilent[J]. Mol Pharmacol, 2007, 71(5): 11851199. [11] Wu A, Wiesner S, Xiao J, et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy[J]. J Neurooncol, 2007, 83(2): 121131. [12] Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133() glioblastomaderived cancer stem cells show differential growth characteristics and molecular profiles[J]. Cancer Res, 2007, 67(9): 40104015. [13] Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133positive and CD133negative cells in glioblastomas[J]. Lab Invest, 2008, 88(8): 808815. [14] Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor[J]. Nature, 1990, 347(6295): 762765. [15] Tohyama T, Lee VM, Rorke LB, et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells[J]. Lab Invest, 1992, 66(3): 303313. [16] Rutka JT, Ivanchuk S, Mondal S, et al. Coexpression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells[J]. Int J Dev Neurosci, 1999, 17(56): 503515. [17] Schiffer D, Manazza A, Tamagno I. Nestin expression in neuroepithelial tumors[J]. Neurosci Lett, 2006, 400(12): 8085. [18] Chang ZG, Yang LY, Wang W, et al. Determination of high mobility group A1 (HMGA1) expression in hepatocellular carcinoma: a potential prognostic marker[J]. Dig Dis Sci, 2005, 50(10): 17641770. [19] Manivannan P, Siddaraju N, Jatiya L, et al. Role of proangiogenic marker galectin3 in follicular neoplasms of thyroid[J]. Indian J Biochem Biophys, 2012, 49(5): 392394. [20] Goldammer T, Owens E, Brunner RM, et al.Assignment of syndecan 2 (SDC2)gene to cattle chromosome band 14q22 and thymus high mobility group box protein TOX (TOX)(2) gene to cattle chromosome band 14q17q18 by in situ hybridization[J]. Cytogenet Genome Res, 2002, 98(4): 311B. [21] Zhang Y, Ma T, Yang S, et al. Highmobility group A1 proteins enhance the expression of the oncogenic miR222 in lung cancer cells[J]. Mol Cell Biochem, 2011, 357(12): 363371. [22] Rho YS, Lim YC, Park IS, et al. High mobility group HMGI(Y) protein expression in head and neck squamous cell carcinoma[J]. Acta Otolaryngol, 2007, 127(1):7681. [23] Fan H, Guo H, Zhang IY, et al. The different HMGA1 expression of total population of glioblastoma cell line U251 and glioma stem cells isolated from U251[J]. Brain Res, 2011, 1384: 914. [24] Donato G, Martinez Hoyos J, Amorosi A, et al. High mobility group A1 expression correlates with the histological grade of human glial tumors[J]. Oncol Rep, 2004, 11(6): 12091213. [25] Ogawa S, Tokumoto Y, Miyake J, et al. Immunopanning selection of A2B5positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes[J]. Neurosci Lett, 2011, 489(2): 7983. [26] Baracskay KL, Kidd GJ, Miller RH, et al. NG2positive cells generate A2B5positive oligodendrocyte precursor cells[J]. Glia, 2007, 55(10): 10011010. [27] Ogden AT, Waziri AE, Lochhead RA, et al. Identification of A2B5+CD133- tumorinitiating cells in adult human gliomas[J]. Neurosurgery, 2008, 62(2): 505514. [28] Tchoghandjian A, Baeza N, Colin C, et al. A2B5 cells from human glioblastoma have cancer stem cell properties[J]. Brain Pathol, 2010, 20(1): 211221. [29] Xu M, Yao Y, Hua W, et al. Mouse glioma immunotherapy mediated by A2B5+ GL261 cell lysatepulsed dendritic cells[J]. Neurooncol, 2014, 116(3): 497504. |
[1] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei.Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction[J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[2] | Xiao Nan, Sun Pengfei.Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas[J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[3] | Zhu Yishuo, Cui Yujie, Liu Qi, Li Jun, Fan Yuechao.Analysis of risk factors and prediction model establishment for early postoperative recurrence in glioma patients[J]. Journal of International Oncology, 2022, 49(2): 79-83. |
[4] | Kong Chunyu, Sun Pengfei.SLC7A11 and glioma[J]. Journal of International Oncology, 2022, 49(10): 604-607. |
[5] | Guo Shihao, Ren Yeqing, Guo Geng.Molecular mechanism of vasculogenic mimicry in brain glioma[J]. Journal of International Oncology, 2021, 48(6): 362-365. |
[6] | Wang Xianwei, Shi Meiyan, Wang Fengqin, Qi Fu, Wang Chaozhe, Zhou Fei.Roles of TSA upregulation miR-4298 targeting inhibition of PADI4 expression in inducing U251 cells apoptosis[J]. Journal of International Oncology, 2021, 48(4): 193-199. |
[7] | Wei Yongjian, Hu Jinjing, Li Xun.Relationship between CDCA8 and tumor progression as well as that between CDCA8 and stemness maintenance of stem cells[J]. Journal of International Oncology, 2021, 48(4): 216-219. |
[8] | Sun Yanqi, Ren Yeqing, Guo Geng.Mechanism of inhibitory effect of interferon and its related signal pathway on the invasion of glioma[J]. Journal of International Oncology, 2021, 48(3): 172-175. |
[9] | Zhao Congxuan, Yu Tao.Mining and prediction of glioma-related genes[J]. Journal of International Oncology, 2020, 47(5): 293-296. |
[10] | Nan Yang, Zhong Yue.New research advances of long non-coding RNA in glioma[J]. Journal of International Oncology, 2020, 47(2): 98-102. |
[11] | Zhang Wen, Song Qibin, Hu Weiguo.Clinical application of multimodal magnetic resonance imaging in glioma[J]. Journal of International Oncology, 2020, 47(11): 686-690. |
[12] | Chen Liang, Qin Jun, Lei Junrong, Liu Jun, Wang Lu.miR-1254 inhibits the proliferation and invasion of glioma cells by targeting CSF-1[J]. Journal of International Oncology, 2020, 47(10): 577-584. |
[13] | Zhang Qianhui, Zhang Yang, Su Weipeng, Zhang Song′an, Liu Pan, Zhao Huarong.Expressions of LSD1, MGMT and Ki-67 in high-grade glioma and their influences on prognosis[J]. Journal of International Oncology, 2019, 46(9): 519-525. |
[14] | Yi Lin, Qiu Shi.Anti-tumor effect and mechanisms of shikonin on gliomas[J]. Journal of International Oncology, 2019, 46(8): 489-491. |
[15] | Kang Ye, Li Jianyi, Yang Xianghong.Research progress of cancer stem cells in triplenegative breast cancer[J]. Journal of International Oncology, 2019, 46(6): 362-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||