Journal of International Oncology››2015,Vol. 42››Issue (2): 118-121.doi:10.3760/cma.j.issn.1673-422X.2015.02.010
Previous ArticlesNext Articles
Chen Ruidong, Tang Wen, Hu Duanmin
Online:
2015-02-08Published:
2015-02-02Contact:
Hu Duanmin E-mail:huduanmin@163.comChen Ruidong, Tang Wen, Hu Duanmin. Research progress of MEG3 long noncoding RNA[J]. Journal of International Oncology, 2015, 42(2): 118-121.
[1] Gibb EA, Brown CJ, Lam WL. The functional role of long noncoding RNA in human carcinomas[J]. Mol Cancer, 2011, 10: 38. [2] Miyoshi N, Wagatsuma H, Wakana S, et al. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q[J]. Genes Cells, 2000, 5(3): 211-220. [3] Zhang X, Zhou Y, Mehta KR, et al. A pituitaryderived MEG3 isoform functions as a growth suppressor in tumor cells[J]. J Clin Endocrinol Metab, 2003, 88(11): 5119-5126. [4] Zhang X, Gejman R, Mahta A, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression[J]. Cancer Res, 2010, 70(6): 2350-2358. [5] Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 noncoding RNA[J]. J Biol Chem, 2007, 282(34): 24731-24742. [6] Braconi C, Kogure T, Valeri N, et al. microRNA29 can regulate expression of the long noncoding RNA gene MEG3 in hepatocellular cancer[J]. Oncogene, 2011, 30(47): 4750-4756. [7] Wang P, Ren Z, Sun P. Overexpression of the long noncoding RNA MEG3 impairs in vitro glioma cell proliferation[J]. J Cell Biochem, 2012, 113(6): 1868-1874. [8] Lu KH, Li W, Liu XH, et al. Long noncoding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression[J]. BMC Cancer, 2013, 13: 461. [9] Qin R, Chen Z, Ding Y, et al. Long noncoding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis[J]. Neoplasma, 2013, 60(5): 486-492. [10] Astuti D, Latif F, Wagner K, et al. Epigenetic alteration at the DLK1GTL2 imprinted domain in human neoplasia:analysis of neuroblastoma, phaeochromocytoma and Wilms′ tumour[J]. Br J Cancer, 2005, 92(8): 1574-1580. [11] Zhao J, Dahle D, Zhou Y, et al. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors[J]. J Clin Endocrinol Metab, 2005, 90(4): 2179-2186. [12] Kagami M, O′Sullivan MJ, Green AJ, et al. The IGDMR and the MEG3DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers[J]. PLoS Genet, 2010, 6(6): e1000992. [13] Paulsen M, Takada S, Youngson NA, et al. Comparative sequence analysis of the imprinted Dlk1Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2H19 region[J].Genome Res, 2001, 11(12): 2085-2094. [14] Takada S, Paulsen M, Tevendale M, et al. Epigenetic analysis of the Dlk1Gtl2 imprinted domain on mouse chromosome 12: implicationsfor imprinting control from comparison with Igf2H19[J]. Hum Mol Genet, 2002, 11(1): 77-86. [15] Zhao J, Zhang X, Zhou Y, et al. Cyclic AMP stimulates MEG3 gene expression in cells through a cAMPresponse element (CRE) in the MEG3 proximal promoter region[J]. Int J Biochem Cell Biol, 2006, 38(10): 1808-1820. [16] Gejman R, Batista DL, Zhong Y, et al. Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas[J]. J Clin Endocrinol Metab, 2008, 93(10): 4119-4125. [17] Sun M , Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer[J]. Tumour Biol, 2014, 35(2): 1065-1073. [18] Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions[J]. Endocrinology, 2010, 151(3): 939-947. [19] Ying L, Huang Y, Chen H, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer[J]. Mol Biosyst, 2013, 9(3): 407-411. [20] Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use[J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001008. [21] Vousden KH, Prives C. Blinded by the light: the growing complexity of p53[J]. Cell, 2009, 137(3): 413-431. [22] Brooks CL, Gu W. p53 regulation by ubiquitin[J]. FEBS Lett, 2011, 585(18): 2803-2809. [23] Ayroldi E, Petrillo MG, Bastianelli A, et al. LGILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells[J]. Cell Death Differ, 2014, In press. [24] Chao CC. Mechanisms of p53 degradation[J]. Clin Chim Acta, 2014, 438C: 139-147. [25] Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops[J]. Oncogene, 2005, 24(17): 2899-2908. [26] Johnson R. Long noncoding RNAs in Huntington′s disease neurodegeneration[J]. Neurobiol Dis, 2012, 46(2): 245-254. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua.Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer[J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing.Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients[J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang.Role of PFDN and its subunits in tumorigenesis and tumor development[J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun.Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei.Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm[J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin.Study on the clinical relationship between inflammatory burden index and gastric cancer[J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||