Journal of International Oncology››2015,Vol. 42››Issue (6): 458-461.doi:10.3760/cma.j.issn.1673-422X.2015.06.016
Previous ArticlesNext Articles
Zheng Yue, Wei Suju
Received:
2014-11-05Online:
2015-06-08Published:
2015-05-31Contact:
Wei Suju E-mail:weisuju@126.comZheng Yue, Wei Suju. Acquired resistance mechanisms of EGFR-TKI in advanced non-small cell lung cancer[J]. Journal of International Oncology, 2015, 42(6): 458-461.
[1] Chen W, Zheng R, Zhang S, et al. Annual report on status of cancer in China, 2010[J]. Chin J Cancer Res, 2014, 26(1): 48-58. [2] Oxnard GR, Arcila ME, Sima CS, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFRmutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation[J]. Clin Cancer Res, 2011, 17(6): 1616-1622. [3] Nelson V, Ziehr J, Agulnik M, et al. Afatinib: emerging nextgeneration tyrosine kinase inhibitor for NSCLC[J]. Onco Targets Therapy, 2013, 6: 135-143. [4] Janne PA, Ramalingam SS, ChihHsin YJ, et al. Clinical activity of the mutantselective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitorresistant nonsmall cell lung cancer (NSCLC)[J]. J Clin Oncol, 2014, 32 Suppl 15: 8009. [5] Sequist LV, JeanCharles S, Gadgeel SM, et al. Firstinhuman evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M)[J]. J Clin Oncol, 2014, 32 Suppl 15: 8010. [6] DongWan K, Lee DH, Kang JH, et al. Clinical activity and safety of HM61713, an EGFRmutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs)[J]. J Clin Oncol, 2014, 32 Suppl 15: 8011. [7] Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC[J]. Cancer Cell, 2010, 17(1): 77-88. [8] Thomson S, Petti F, SujkaKwok I, et al. Kinase switching in mesenchymallike nonsmall cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy[J]. Clin Exp Metastasis, 2008, 25(8): 843-854. [9] Doebele RC, Pilling AB, Aisner DL, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged nonsmall cell lung cancer[J]. Clin Cancer Res, 2012, 18(5): 1472-1482. [10] Katayama R, Khan TM, Benes C, et al. Therapeutic strategies to overcome crizotinib resistance in nonsmall cell lung cancers harboring the fusion oncogene EML4ALK[J]. Proc Natl Acad Sci USA, 2011, 108(18): 7535-7540. [11] Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALKrearranged lung cancers[J]. Sci Transl Med, 2012, 4(120): 120ra17. [12] Takezawa K, Pirazzoli V, Arcila ME, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFRmutant lung cancers that lack the secondsite EGFRT790M mutation[J]. Cancer Discov, 2012, 2(10): 922-933. [13] Sequist LV, Waltman BA, DiasSantagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J]. Sci Transl Med, 2011, 3(75): 75ra26. [14] Byers LA, Diao L, Wang J, et al. An epithelialmesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance[J]. Clin Cancer Res, 2013, 19(1): 279-290. [15] VazquezMartin A, Cufi S, OliverasFerraros C, et al. IGF1R/epithelialtomesenchymal transition (EMT) crosstalk suppresses the erlotinibsensitizing effect of EGFR exon 19 deletion mutations[J]. Sci Rep, 2013, 3: 2560. [16] Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFRTKI therapy in 155 patients with EGFRmutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247. [17] Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827): 1039-1043. [18] Niederst MJ, Engelman JA. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer[J]. Sci Signal, 2013, 6(294): re6. [19] Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer[J]. J Clin Oncol, 2013, 31(31): 3987-3996. [20] Chong CR, Janne PA. The quest to overcome resistance to EGFRtargeted therapies in cancer[J]. Nat Med, 2013, 19(11): 1389-1400. [21] Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGFbinding proteins[J]. J Clin Invest, 2008, 118(7): 2609-2619. [22] Cortot AB, Repellin CE, Shimamura T, et al. Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway[J]. Cancer Res, 2013, 73(2): 834-843. [23] Terai H, Soejima K, Yasuda H, et al. Activation of the FGF2FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC[J]. Mol Cancer Res, 2013, 11(7): 759-767. [24] Huang S, Benavente S, Armstrong EA, et al. p53 modulates acquired resistance to EGFR inhibitors and radiation[J]. Cancer Res, 2011, 71(22): 7071-7079. [25] Sauer L, Gitenay D, Vo C, et al. Mutant p53 initiates a feedback loop that involves Egr1/EGF receptor/ERK in prostate cancer cells[J]. Oncogene, 2010, 29(18): 2628-2637. [26] Zwang Y, SasChen A, Drier Y, et al. Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals[J]. Mol Cell, 2011, 42(4): 524-535. [27] Ohashi K, Sequist LV, Arcila ME, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1[J]. Proc Natl Acad Sci USA, 2012, 109(31): E2127-2133. [28] de Bruin EC, Cowell C, Warne PH, et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer[J]. Cancer Discov, 2014, 4(5): 606-619. |
[1] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan.Progress of ferroptosis-related mechanisms in osteosarcoma[J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Huang Hui, Ding Jianghua.Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma[J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[5] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai.Research progress on the application of combining radiotherapy and systemic therapy in breast cancer[J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[6] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong.Progress of PARP inhibitors in targeted therapy of small cell lung cancer[J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[7] | Liu Bohan, Huang Junxing.Research progress of solute carriers related genes in malignant tumors[J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[8] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong.Research progress on targeted therapy of breast cancer with low expression of HER2[J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[9] | Deng Lili, Duan Xingyu, Li Baozhong.Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma[J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[10] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui.Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma[J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[11] | Jiang Shan, Xu Ximing.Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma[J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[12] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing.Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy[J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[13] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang.Treatment status of non-small cell lung cancer with METexon14 skipping mutation[J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[14] | Song Jia, Hu Qinyong.Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma[J]. Journal of International Oncology, 2022, 49(9): 550-554. |
[15] | Zhang Jingxian, Yi Dan, Li Xiaojiang.Application of antibody-drug conjugates in the treatment of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(5): 296-301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||