Journal of International Oncology››2019,Vol. 46››Issue (4): 231-234.doi:10.3760/cma.j.issn.1673-422X.2019.04.008
Previous ArticlesNext Articles
Zhao Guoli1,2, Liu Hengyao1, Zhang Yueying2
Received:
2019-01-07Revised:
2019-02-27Online:
2019-04-08Published:
2019-05-29Contact:
Zhang Yueying, Email: zhangyueying828@126.com E-mail:zhangyueying828@126.comSupported by:
National Natural Science Foundation of China (81403150); Natural Science Foundation of Shandong Province of China (ZR2014HL064); Development Project of Traditional Chinese Medical Sciences and Technology of Shandong Province of China (2015-325); Innovation Project of Shandong Academy of Medical Sciences
Zhao Guoli1,2, Liu Hengyao1, Zhang Yueying2. Regulating effect of microRNAs in lung cancer stem cells[J]. Journal of International Oncology, 2019, 46(4): 231-234.
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30. DOI: 10.3322/caac.21442. [2] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. DOI: 10.1038/367645a0. [3] Li L, Li JC, Yang H, et al. Expansion of cancer stem cell pool initiates lung cancer recurrence before angiogenesis[J]. Proc Natl Acad Sci U S A, 2018, 115(38): 8948-8957. DOI: 10.1073/pnas.1806219115. [4] Yu Y, Wang YY, Wang YQ, et al. Antiangiogenic therapy using endostatin increases the number of ALDH+ lung cancer stem cells by generating intratumor hypoxia[J]. Sci Rep, 2016, 6: 34239. DOI: 10.1038/srep34239. [5] Suresh R, Ali S, Ahmad A, et al. The role of cancer stem cells in recurrent and drug-resistant lung cancer[J]. Adv Exp Med Biol, 2016, 890: 57-74. DOI: 10.1007/978-3-319-24932-2_4. [6] Lin S, Sun JG, Wu JB, et al. Aberrant microRNAs expression in CD133+/CD326+ human lung adenocarcinoma initiating cells from A549[J]. Mol Cells, 2012, 33(3): 277-283. DOI: 10.1007/s10059-012-2252-y. [7] Sun X, Jiao X, Pestell TG, et al. MicroRNAs and cancer stem cells: the sword and the shield[J]. Oncogene, 2014, 33(42): 4967-4977. DOI: 10.1038/onc.2013.492. [8] Zhang F, Li T, Han L, et al. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells[J]. Biochem Biophys Res Commun, 2018, 496(4): 1169-1175. DOI: 10.1016/j.bbrc.2018.01.164. [9] 米永华, 何苗, 刘北忠. miR-133b靶向PKM2基因对肺癌A549干细胞增殖及药物敏感性的影响[J]. 中国肺癌杂志, 2017, 20(6): 376-381. DOI: 10.3779/j.issn.1009-3419.2017.06.02. [10] Chiou GY, Cherng JY, Hsu HS, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma[J]. J Control Release, 2012, 159(2): 240-250. DOI: 10.1016/j.jconrel.2012.01.014. [11] Zhu J, Wang S, Chen Y, et al. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells[J]. J Nutr Biochem, 2017, 44: 80-91. DOI: 10.1016/j.jnutbio.2017.02.020. [12] Shi L, Wang Y, Lu Z, et al. miR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop[J]. Oncogene, 2017, 36(12): 1631-1643. DOI: 10.1038/onc.2016.332. [13] Jiang HL, Jiang LM, Han WD. Wnt/βcatenin signaling pathway in lung cancer stem cells is a potential target for the development of novel anticancer drugs[J]. J BUON, 2015, 20(4): 1094-1100. [14] Gong L, Song J, Lin X. Serinearginine protein kinase 1 promotes a cancer stem cell-like phenotype through activation of Wnt/β-catenin signalling in NSCLC[J]. J Pathol, 2016, 240(2): 184-196. DOI: 10.1002/path.4767. [15] Zhu J, Jiang Y, Yang X, et al. Wnt/β-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells[J]. Biochem Biophys Res Commun, 2017, 482(1): 15-21. DOI: 10.1016/j.bbrc.2016.11.038. [16] Fang L, Cai J, Chen B, et al. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signaling[J]. Nat Commun, 2015, 6: 8640. DOI: 10.1038/ncomms9640. [17] Xu W, Ji J, Xu Y, et al. MicroRNA-191, by promoting the EMT and increasing CSC-like properties, is involved in neoplastic and metastatic properties of transformedhuman bronchial epithelial cells[J]. Mol Carcinog, 2015, 54 Suppl 1: E148-E161. DOI: 10.1002/mc.22221. [18] Qi W, Chen J, Cheng X, et al. Targeting the Wnt-regulatory protein CTNNBIP1 by microRNA-214 enhances the stemness and self-renewal of cancer stem-like cells in lung adenocarcinomas[J]. Stem Cells, 2015, 33(12): 3423-3436. DOI: 10.1002/stem.2188. [19] Hassan KA, Wang L, Korkaya H, et al. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma[J]. Clin Cancer Res, 2013, 19(8): 1972-1980. DOI: 10.1158/1078-0432.CCR-12-0370. [20] Arasada RR, Amann JM, Rahman MA, et al. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling[J]. Cancer Res, 2014, 74(19): 5572-5584. DOI: 10.1158/0008-5472.CAN-13-3724. [21] Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. PLoS One, 2009, 4(8): e6816. DOI: 10.1371/journal.pone.0006816. [22] Zhang S, Yang YL, Wang Y, et al. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells[J]. J Exp Clin Cancer Res, 2014, 33: 93. DOI: 10.1186/s13046-014-0093-6. [23] Jiang N, Wang X, Xie X, et al. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened[J]. Am J Respir Cell Mol Biol, 2014, 51(2): 273-283. [24] Hu J, Qiu M, Jiang F, et al. MiR-145 regulates cancer stemlike properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells[J]. Tumour Biol, 2014, 35(9): 8953-8961. DOI: 10.1007/s13277-014-2158-8. [25] Han Z, Zhou X, Li S, et al. Inhibition of miR-23a increases the sensitivity of lung cancer stem cells to erlotinib through PTEN/PI3K/Akt pathway[J]. Oncol Rep, 2017, 38(5): 3064-3070. DOI: 10.3892/or.2017.5938. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou.Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer[J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Gong Yan, Chen Honglei.Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer[J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[3] | He Jiahui, Hu Qinyong.Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data[J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[4] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin.lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway[J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[5] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng.Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection[J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[6] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin.Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging[J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[7] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun.Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model[J]. Journal of International Oncology, 2022, 49(9): 532-536. |
[8] | Chen Huangjing, Zhu Pengfei, Zhang Qing, Chen Guifang, Yang Chunlin, He Ying.Comparative study on the clinical value of contrast-enhanced ultrasound- and CT-guided percutaneous puncture biopsy in peripheral lung masses[J]. Journal of International Oncology, 2022, 49(8): 459-463. |
[9] | Cai Gangxiang, Li Jing, Xu Bin.Advances in neoadjuvant immunotherapy for lung cancer[J]. Journal of International Oncology, 2022, 49(6): 366-370. |
[10] | Zhang Jingxian, Yi Dan, Li Xiaojiang.Application of antibody-drug conjugates in the treatment of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(5): 296-301. |
[11] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing.MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2[J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[12] | Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei.Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer[J]. Journal of International Oncology, 2022, 49(4): 247-251. |
[13] | Gao Shile, Lu Donghui, Liu Meiqin, Xu Xingjun, Ma Huan, Zhang Yu.Clinical efficacy and optimal dose of apatinib combined with chemotherapy in patients with advanced non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(3): 140-145. |
[14] | Xie Hongxia, Zuo Jinhui, Liao Dongying, Deng Renfen, Yao Yang, Jia Yingjie, Li Xiaojiang, Kong Fanming.Application of PD-L1 inhibitors in the treatment of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(2): 111-115. |
[15] | Huang Huayu, Song Qibin, Gong Hongyun, Song Jia.Analysis on the incidence and risk factors of pneumonia in patients with lung cancer receiving thoracic radiotherapy and immunotherapy[J]. Journal of International Oncology, 2022, 49(12): 718-723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||