Journal of International Oncology››2020,Vol. 47››Issue (10): 624-626.doi:10.3760/cma.j.cn371439-20191016-00090
• Reviews •Previous ArticlesNext Articles
Zhang Baihong1(), Yue Hongyun2
Received:
2019-10-16Revised:
2020-02-21Online:
2020-10-08Published:
2020-11-20Contact:
Zhang Baihong E-mail:bhzhang1999@126.comZhang Baihong, Yue Hongyun. Mechanisms of microrobot in cancer therapy[J]. Journal of International Oncology, 2020, 47(10): 624-626.
"
种类 | 结构 | 动力 | 控制 | 功能 |
---|---|---|---|---|
磁控细菌机器人 | 人造细菌鞭毛/趋磁细菌群 | 细菌鞭毛运动 | 磁场 | 输送药物[
|
纳米马达 | 金纳米棒共轭多孔硅纳米囊泡 | 静脉血流 | 近红外激光控 | 输送药物[
|
中孔氧化硅纳米 | 尿素酶 | 底物依赖 | 靶向肿瘤[
|
|
超支化聚酰胺 | 一氧化氮 | 光控 | 操控细胞[
|
|
萘酞菁 | 过氧化氢 | 光控 | 清除肿瘤[
|
|
续生物激活螺旋机器人 | 螺旋藻包裹Fe3O4 | 化学能 | 磁场 | 靶向肿瘤[
|
DNA纳米机器人 | DNA适配体连接核仁素和凝血酶 | DNA分子激动 | 内皮细胞 | 靶向肿瘤[
|
软体机器人 | 软体 | 磁弹性 | 自控 | 操控细胞[
|
液态金属纳米机器人 | 金属镓 | 类细菌自运动 | 超声场 | 清除肿瘤[
|
[1] | Kopperger E, List J, Madhira S, et al. A self-assembled nanoscale robotic arm controlled by electric fields[J]. Science, 2018,359(6373):296-301. DOI: 10.1126/science.aao4284. doi:10.1126/science.aao4284pmid:29348232 |
[2] | Stephen Ornes. News feature: what's the best way to build a molecular machine?[J]. Proc Natl Acad Sci U S A, 2018,115(38):9327-9330. DOI: 10.1073/pnas.1811689115. doi:10.1073/pnas.1811689115 |
[3] | 张百红, 岳红云. 肿瘤研究的新方法学[J]. 西北国防医学杂志, 2016,37(2) : 117-120. DOI: 10.16021/j.cnki.1007-8622.2016.02.017. |
[4] | Jain KK. Role of nanobiotechnology in drug delivery[J]. Methods Mol Biol, 2020,2059:55-73. DOI: 10.1007/978-1-4939-9798-5_2. |
[5] | Ghosh S, Ghosh A. Mobile nanotweezers for active colloidal manipulation[J]. Sci Robot, 2018, 3(14): eaaq0076. DOI: 10.1126/scirobotics.aaq0076. pmid:33141698 |
[6] | Alapan Y, Yasa O, Schauer O, et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery[J]. Sci Robot, 2018, 3(17): eaar4423. DOI: 10.1126/scirobotics.aar4423. doi:10.1126/scirobotics.aar4423pmid:33141741 |
[7] | Schuerle S, Soleimany AP, Yeh T, et al. Synthetic and living micropropellers for convection-enhanced nanoparticle transport[J]. Sci Adv, 20198, 5(4): eaav480. DOI: 10.1126/sciadv.aav4803. |
[8] | Zhang H, Cui W, Qu X, et al. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codeliverynanovehicle for effective tumor suppression[J]. Proc Natl Acad Sci U S A, 2019,116(16):7744-7749. DOI: 10.1073/pnas.1817251116. doi:10.1073/pnas.1817251116pmid:30926671 |
[9] | Wu Z, Li L, Yang Y, et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo[J]. Sci Robot, 2019, 4(32): eaax0613. DOI: 10.1126/scirobotics.aax0613. |
[10] | Gao W, de Ávila BE, Zhang L, et al. Targeting and isolation of cancer cells using micro/nanomotors[J]. Adv Drug Deliv Rev, 2018,125:94-101. DOI: 10.1016/j.addr.2017.09.002. doi:10.1016/j.addr.2017.09.002pmid:28893551 |
[11] | Yan XH, Zhou Q, Vincent M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy[J]. Sci Robot, 2017, 2(12): eaaq1155. DOI: 10.1126/scirobotics.aaq1155. |
[12] | Li S, Jiang Q, Liu S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]. Nat Biotechnol, 2018,36(3):258-264. DOI: 10.1038/nbt.4071. doi:10.1038/nbt.4071pmid:29431737 |
[13] | Li S, Jiang Q, Ding B, et al. Anticancer activities of tumor-killing nanorobots[J]. Trends Biotechnol, 2019,37(6):573-577. DOI: 10.1016/j.tibtech.2019.01.010. |
[14] | Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nat Nanotechnol, 2016,11(11):941-947. DOI: 10.1038/nnano.2016.137. pmid:27525475 |
[15] | Hortelão AC, Carrascosa R, Murillo-Cremaes N, et al. Targeting 3D bladder cancer spheroids with urease-powered nanomotors[J]. ACS Nano, 2019,13(1):429-439. DOI: 10.1021/acsnano.8b06610. doi:10.1021/acsnano.8b06610pmid:30588798 |
[16] | Hu W, Lum GZ, Mastrangeli M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018,554(7690):81-85. DOI: 10.1038/nature25443. doi:10.1038/nature25443pmid:29364873 |
[17] | Li JY, Li XJ, Tao L, et al. Development of a magnetic microrobot for carrying and delivering targeted cells[J]. Sci Robot, 2018, 3(19): eaat8829. DOI: 10.1126/scirobotics.aat8829. doi:10.1126/scirobotics.aat8829pmid:33141689 |
[18] | Wan M, Chen H, Wang Q, et al. Bio-inspired nitric-oxide-driven nanomotor[J]. Nat Commun, 2019,10(1):966. DOI: 10.1038/s41467-019-08670-8. |
[19] | Park J, Jin C, Lee S, et al. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia the-rapy[J]. Adv Healthc Mater, 2019,8(16):e1900213. DOI: 10.1002/adhm.201900213. doi:10.1002/adhm.201900213pmid:31290597 |
[20] | Choi H, Lee GH, Kim KS, et al. Light-guided nanomotor systems for autonomous photothermal cancer therapy[J]. ACS Appl Mater Interfaces, 2018,10(3):2338-2346. DOI: 10.1021/acsami.7b16595. doi:10.1021/acsami.7b16595pmid:29280612 |
[21] | Lum GZ, Ye Z, Dong X, et al. Shape-programmable magnetic soft matter[J]. Proc Natl Acad Sci U S A, 2016,113(41):E6007-E6015. DOI: 10.1073/pnas.1608193113. doi:10.1073/pnas.1608193113pmid:27671658 |
[22] | Ceylan H, Yasa IC, Yasa O, et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release[J]. ACS Nano, 2019,13(3):3353-3362. DOI: 10.1021/acsnano.8b09233. doi:10.1021/acsnano.8b09233pmid:30742410 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||