Journal of International Oncology››2023,Vol. 50››Issue (1): 47-50.doi:10.3760/cma.j.cn371439-20220715-00009
• Reviews •Previous ArticlesNext Articles
Ma Xueyan1, Lu Lili1, Sun Pengfei2()
Received:
2022-07-15Revised:
2022-11-25Online:
2023-01-08Published:
2023-03-16Contact:
Sun Pengfei E-mail:ery_sunpf@lzu.edu.cnMa Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer[J]. Journal of International Oncology, 2023, 50(1): 47-50.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. doi:10.3322/caac.21660 |
[2] | Kudela E, Liskova A, Samec M, et al. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer[J]. EPMA J, 2021, 12(2): 199-220. DOI: 10.1007/s13167-021-00244-3. doi:10.1007/s13167-021-00244-3pmid:34194585 |
[3] | Yuan Y, Cai X, Shen F, et al. HPV post-infection microenvironment and cervical cancer[J]. Cancer Lett, 2021, 497: 243-254. DOI: 10.1016/j.canlet.2020.10.034. doi:10.1016/j.canlet.2020.10.034pmid:33122098 |
[4] | Chen XJ, Han LF, Wu XG, et al. Clinical significance of CD163+and CD68+tumor-associated macrophages in high-risk HPV-related cervical cancer[J]. J Cancer, 2017, 8(18): 3868-3875. DOI: 10.7150/jca.21444. doi:10.7150/jca.21444 |
[5] | Zhang J, Jin S, Li X, et al. Human papillomavirus type 16 disables the increased natural killer cells in early lesions of the cervix[J]. J Immunol Res, 2019, 2019: 9182979. DOI: 10.1155/2019/9182979. doi:10.1155/2019/9182979 |
[6] | Maskey N, Thapa N, Maharjan M, et al. Infiltrating CD4 and CD8 lymphocytes in HPV infected uterine cervical milieu[J]. Cancer Manag Res, 2019, 11: 7647-7655. DOI: 10.2147/CMAR.S217264. doi:10.2147/CMAR.S217264pmid:31616181 |
[7] | Lin D, Kouzy R, Abi Jaoude J, et al. Microbiome factors in HPV-driven carcinogenesis and cancers[J]. PLoS Pathog, 2020, 16(6): e1008524. DOI: 10.1371/journal.ppat.1008524. doi:10.1371/journal.ppat.1008524 |
[8] | Wang X, Huang X, Zhang Y. Involvement of human papillomaviruses in cervical cancer[J]. Front Microbiol, 2018, 9: 2896. DOI: 10.3389/fmicb.2018.02896. doi:10.3389/fmicb.2018.02896pmid:30546351 |
[9] | de Geus V, Ewing-Graham PC, de Koning W, et al. Identifying molecular changes in early cervical cancer samples of patients that developed metastasis[J]. Front Oncol, 2021, 11: 715077. DOI: 10.3389/fonc.2021.715077. doi:10.3389/fonc.2021.715077 |
[10] | Ohno A, Iwata T, Katoh Y, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy[J]. Gynecol Oncol, 2020, 159(2): 329-334. DOI: 10.1016/j.ygyno.2020.07.106. doi:10.1016/j.ygyno.2020.07.106pmid:32829964 |
[11] | Tang A, Dadaglio G, Oberkampf M, et al. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer[J]. Int J Cancer, 2016, 139(6): 1358-1371. DOI: 10.1002/ijc.30169. doi:10.1002/ijc.30169pmid:27130719 |
[12] | Kim SS, Shen S, Miyauchi S, et al. B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade[J]. Clin Cancer Res, 2020, 26(13): 3345-3359. DOI: 10.1158/1078-0432.CCR-19-3211. doi:10.1158/1078-0432.CCR-19-3211pmid:32193227 |
[13] | Gutiérrez-Hoya A, Soto-Cruz I. NK cell regulation in cervical cancer and strategies for immunotherapy[J]. Cells, 2021, 10(11): 3104. DOI: 10.3390/cells10113104. doi:10.3390/cells10113104 |
[14] | Venancio PA, Consolaro MEL, Derchain SF, et al. Indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase expression in HPV infection, SILs, and cervical cancer[J]. Cancer Cytopathol, 2019, 127(9): 586-597. DOI: 10.1002/cncy.22172. doi:10.1002/cncy.22172pmid:31412167 |
[15] | Xiang X, Wang J, Lu D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 75. DOI: 10.1038/s41392-021-00484-9. doi:10.1038/s41392-021-00484-9 |
[16] | Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008. doi:10.1016/j.immuni.2014.06.008pmid:25035950 |
[17] | Guo F, Kong W, Zhao G, et al. The correlation between tumor-associated macrophage infiltration and progression in cervical carcinoma[J]. Biosci Rep, 2021, 41(5): BSR20203145. DOI:10.1042/BSR20203145. doi:10.1042/BSR20203145 |
[18] | Wu L, Liu H, Guo H, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in cervical carcinoma patients[J]. Oncol Lett, 2018, 15(6): 9507-9515. DOI: 10.3892/ol.2018.8532. doi:10.3892/ol.2018.8532pmid:29844835 |
[19] | Liang Y, Lü B, Zhao P, et al. Increased circulating GrMyeloid-derived suppressor cells correlated with tumor burden and survival in locally advanced cervical cancer patient[J]. J Cancer, 2019, 10(6): 1341-1348. DOI: 10.7150/jca.29647. doi:10.7150/jca.29647pmid:31031843 |
[20] | Lu Z, Zhu M, Marley JL, et al. The combined action of monocytic myeloid-derived suppressor cells and mucosal-associated invariant T cells promotes the progression of cervical cancer[J]. Int J Cancer, 2021, 148(6): 1499-1507. DOI: 10.1002/ijc.33411. doi:10.1002/ijc.33411pmid:33245569 |
[21] | Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272. DOI: 10.1038/s41586-018-0694-x. doi:10.1038/s41586-018-0694-x |
[22] | Bonin CM, Padovani CTJ, da Costa IP, et al. Detection of regulatory T cell phenotypic markers and cytokines in patients with human papillomavirus infection[J]. J Med Virol, 2019, 91(2): 317-325. DOI: 10.1002/jmv.25312. doi:10.1002/jmv.25312pmid:30192406 |
[23] | 舒航, 徐中华, 朱皓晨, 等. 宫颈癌放疗敏感性研究进展[J]. 国际肿瘤学杂志, 2020, 47(8): 496-500. DOI: 10.3760/cma.j.cn371439-20191120-00064. doi:10.3760/cma.j.cn371439-20191120-00064 |
[24] | Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment[J]. Int J Clin Oncol, 2020, 25(5): 801-809. DOI: 10.1007/s10147-020-01666-1. doi:10.1007/s10147-020-01666-1pmid:32246277 |
[25] | Mori Y, Sato H, Kumazawa T, et al. Analysis of radiotherapy-induced alteration of CD8+T cells and PD-L1 expression in patients with uterine cervical squamous cell carcinoma[J]. Oncol Lett, 2021, 21(6): 446. DOI: 10.3892/ol.2021.12707. doi:10.3892/ol.2021.12707 |
[26] | 崔昌裕. 放疗对宫颈癌患者外周血淋巴细胞亚群及炎症因子水平的影响[D]. 延安: 延安大学, 2022. DOI: 10.27438/d.cnki.gyadu.2022.000621. doi:10.27438/d.cnki.gyadu.2022.000621 |
[27] | Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Tumor microenvironment as a "game changer" in cancer radiotherapy[J]. Int J Mol Sci, 2019, 20(13): 3212. DOI: 10.3390/ijms20133212. doi:10.3390/ijms20133212 |
[28] | Zhang Y, Yu M, Jing Y, et al. Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer[J]. Br J Cancer, 2021, 124(2): 414-424. DOI: 10.1038/s41416-020-01123-w. doi:10.1038/s41416-020-01123-w |
[29] | Herter JM, Kiljan M, Kunze S, et al. Influence of chemoradiation on the immune microenvironment of cervical cancer patients[J]. Strahlenther Onkol, 2022, Inpress. DOI: 10.1007/s00066-022-02007-z. doi:10.1007/s00066-022-02007-z |
[30] | Chen R, Yang W, Li Y, et al. Effect of immunotherapy on the immune microenvironment in advanced recurrent cervical cancer[J]. Int Immunopharmacol, 2022, 106: 108630. DOI: 10.1016/j.intimp.2022.108630. doi:10.1016/j.intimp.2022.108630 |
[31] | Jazaeri AA, Zsiros E, Amaria RN, et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma[J]. J Clin Oncol, 2019, 37(15_suppl): 2538. DOI: 10.1200/JCO.2019.37.15_suppl.2538. doi:10.1200/JCO.2019.37.15_suppl.2538 |
[32] | Huang H, Nie CP, Liu XF, et al. Phase Ⅰ study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer[J]. J Clin Invest, 2022, 132(15): e157726. DOI: 10.1172/JCI157726. doi:10.1172/JCI157726 |
[33] | Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy[J]. Eur J Cancer, 2016, 52: 50-66. DOI: 10.1016/j.ejca.2015.08.021. doi:10.1016/j.ejca.2015.08.021pmid:26645943 |
[34] | Panda A, Rosenfeld JA, Singer EA, et al. Genomic and immunologic correlates of LAG-3 expression in cancer[J]. Oncoimmuno-logy, 2020, 9(1): 1756116. DOI: 10.1080/2162402X.2020.1756116. doi:10.1080/2162402X.2020.1756116 |
[35] | Solinas C, De Silva P, Bron D, et al. Significance of TIM3 expression in cancer: from biology to the clinic[J]. Semin Oncol, 2019, 46(4-5): 372-379. DOI: 10.1053/j.seminoncol.2019.08.005. doi:S0093-7754(18)30257-4pmid:31733828 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei.Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study[J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[4] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu.Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua.Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy[J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi.Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer[J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[7] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[8] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong.Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[9] | Sa Qiang, Xu Hangcheng, Wang Jiayu.Advances in immunotherapy for breast cancer[J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[10] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[11] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao.Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes[J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[12] | Qian Xiaotao, Shi Ziyi, Hu Ge.A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[13] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan.Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer[J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[14] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie.Research progress of myeloid-derived suppressor cells in tumor angiogenesis[J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[15] | Gu Huayan, Zhu Teng, Guo Guilong.Breast microbiota and breast cancer: present and future[J]. Journal of International Oncology, 2024, 51(1): 55-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||