Journal of International Oncology››2015,Vol. 42››Issue (7): 516-518.doi:10.3760/cma.j.issn.1673-422X.2015.07.010
Previous ArticlesNext Articles
Wu Dongjuan, Hua Dong
Online:
2015-07-08Published:
2015-05-26Contact:
Hua Dong E-mail:wx89211@163.comWu Dongjuan, Hua Dong. Inducible costimulatory molecule and its roles in tumor microenvironment[J]. Journal of International Oncology, 2015, 42(7): 516-518.
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. [2] PolyakK, Haviv I, Campbell IG. Coevolution of tumor cells and their microenvironment[J]. Trends Genet, 2009, 25(1): 30-38. [3] Oluwadara O, Giacomelli L, Brant X, et al. The role of the microenvironment in tumor immune surveillance[J]. Bioinformation, 2011, 5(7): 285-290. [4] Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T cell costimulator: a structurally and functionally related to CD28[J]. Nature, 1999, 397(6716): 263-266. [5] Yao S, Zhu Y, Zhu G, et al. B7h2 is a costimulatory ligand for CD28 in human[J]. Immunity, 2011, 34(5): 729-740. [6] Larimore K, Liang L, Bakkour S, et al. B7hexpressing dendritic cells and plasma B cells mediate distinct outcomes of ICOS costimulation in T celldependent antibody responses[J]. BMC Immunol, 2012, 13: 29. [7] MartinOrozco N, Li Y, Wang Y, et al. Melanoma cells express ICOS ligand to promote the activation and expansion of Tregulatory cells[J]. Cancer Res, 2010, 70(23): 9581-9590. [8] Schreiner B, Wischhusen J, Mitsdoerffer M, et al. Expression of the B7related molecule ICOSL by human glioma cells in vitro and in vivo[J]. Glia, 2003, 44(3): 296-301. [9] Rudulier CD, McKinstry KK, AIYassin GA, et al. The number of responding CD4 T cells and the dose of antigen conjointly determine the TH1/TH2 phenotype by modulating B7/CD28 interactions[J]. J Immunol, 2014, 192(11): 5140-5150. [10] Chen XL, Cao CD, Kang AJ, et al. In situ expression and significance of B7 costimulatory molecules within tissues of human gastric carcinoma[J]. World J Gastroenterol, 2003, 9(6): 1370-1373. [11] Baseggio L, TraverseGlehen A, Berger F, et al. CD10 and ICOS expression by multiparametric flow cytometry in angioimmunoblastic Tcell lymphoma[J]. Modern Pathology, 2011, 24(7): 993-1003. [12] Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy[J]. Blood, 2013, 121(5): 734-744. [13] Zhang Q, Wang H, Kantekure K, et al. Oncogenic tyrosine kinase NPMALK induces expression of the growthpromoting receptor ICOS[J]. Blood, 2011, 118(11): 3062-3071. [14] Chen H, Fu T, Suh WK, et al. CD4 T cells require ICOSmediated PI3K signaling to increase TBet expression in the setting of antiCTLA4 therapy[J]. Cancer Immunol Res, 2014, 2(2): 167-176. [15] Feyler S, Scott GB, Parrish C, et al. Tumour cell generation of inducible regulatory Tcells in multiple myeloma is contactdependent and antigenpresenting cellindependent[J]. PLoS One, 2012, 7(5): e35981. [16] He M, Wang Y, Shi WJ, et al. Immunomodulation of inducible costimulator (ICOS) in human cytokineinduced killer cells against cholangiocarcinoma through ICOS/ICOS ligand interaction[J]. J Dig Dis, 2011, 12(5): 393-400. [17] Galicia G, Kasran A, Uyttenhove C, et al. ICOS deficiency results in exacerbated IL17 mediated experimental autoimmune encephalomyelitis[J]. J Clin Immunol, 2009, 29(4): 426-433. [18] Chen H, Liakou CI, Kamat A, et al. AntiCTLA4 therapy results in higher CD4+ICOShi T cell frequency and IFNgamma levels in both nonmalignant and malignant prostate tissues[J]. Proc Natl Acad Sci USA, 2009, 106(8): 2729-2734. [19] Bogunovic D, O′Neill DW, BelitskayaLevy I, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival[J]. Proc Natl Acad Sci USA, 2009, 106(48): 20429-20434. [20] Gousias K, von Ruecker A, Voulgari P, et al. Phenotypical analysis, relation to malignancy and prognostic relevance of ICOS+T regulatory and dendritic cells in patients with gliomas[J]. J Neuroimmunol, 2013, 264(1-2): 84-90. [21] Harshman LC, Drake CG, Wargo JA, et al. Cancer immunotherapy highlights from the 2014 ASCO meeting[J]. Cancer Immunol Res, 2014, 2(8): 714-719. [22] Fan X, Quezada SA, Sepulveda MA, et al. Engagement of the ICOS pathway markedly enhances efficacy of CTLA4 blockade in cancer immunotherapy[J]. J Exp Med, 2014, 211(4): 715-725. [23] Fu T, He Q, Sharma P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by antiCTLA4 therapy[J]. Cancer Res, 2011, 71(16): 5445-5454. |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie.Research progress of myeloid-derived suppressor cells in tumor angiogenesis[J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong.Breast microbiota and breast cancer: present and future[J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei.Current status of research on exosomes in malignancies[J]. Journal of International Oncology, 2023, 50(8): 484-488. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng.Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance[J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong.Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai.Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy[J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei.Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian.Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects[J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua.Progress of immunotherapy-based strategy in triple-negative breast cancer[J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu.Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer[J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei.Advances in the immune microenvironment in cervical cancer[J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Wu Jiayu, Liu Jiacheng.Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule[J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[15] | Zhang Zishu, Wu Xinlin.Mechanism of action of lactic acid in tumor microenvironment and related treatment[J]. Journal of International Oncology, 2022, 49(6): 349-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||