
生物材料在组织修复与再生领域中扮演着至关重要的角色,其应用可显著提高临床治疗效果,并改善患者预后。智能响应性生物材料是一类能够对外界刺激如温度、pH值、光照、电场、磁场以及生物分子等做出响应并产生相应变化的材料,在组织工程中展现出巨大的应用前景。本文将对智能响应性生物材料促进组织修复机制及智能响应机制作一综述,并进一步分析智能响应性生物材料在组织修复与再生过程中的挑战和未来发展方向。
","endNoteUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=EndNote&id=724","reference":"1 | Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314. |
2 | 戴建武. 引导组织再生智能生物材料的转化研究[J]. 生命科学, 2016, 28(8): 907. |
3 | 曹谊林, 刘伟, 张文杰, 等. 组织工程研究进展[J]. 上海交通大学学报(医学版), 2012, 32(9): 1241. |
4 | 张海璇, 孟旬, 李平. 光和温度刺激响应型材料[J]. 化学进展, 2008, 20(5): 657. |
5 | 柴梅, 黄琛琛, 夏胜男, 等. 铸瓷粘结桥修复深覆(牙合)伴单颗前牙缺失的临床效果[J]. betway必威登陆网址 (betway.com )学报, 2024, 45(6): 326. |
6 | Panayi AC, Orgill DP. Current use of biological scaffolds in plastic surgery[J]. Plast Reconstr Surg, 2019, 143(1): 209. |
7 | Yannas IV, Lee E, Orgill DP, et al. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin[J]. Proc Natl Acad Sci U S A, 1989, 86(3): 933. |
8 | Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering -- in vivo and in vitro applications[J]. Clin Plast Surg, 2012, 39(1): 33. |
9 | O'Loughlin A, Kulkarni M, Vaughan EE, et al. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model[J]. Stem Cell Res Ther, 2013, 4(6): 158. |
10 | Long LY, Hu C, Liu WQ, et al. Injectable multifunctional hyaluronic acid/methylcellulose hydrogels for chronic wounds repairing[J]. Carbohydr Polym, 2022, 289: 119456. |
11 | Luo YS, Xu XF, Ye ZM, et al. 3D bioprinted mesenchymal stromal cells in skin wound repair[J]. Front Surg, 2022, 9: 988843. |
12 | Teng M, Huang YS, Zhang HS. Application of stems cells in wound healing--an update[J]. Wound Repair Regen, 2014, 22(2): 151. |
13 | Rehman J, Traktuev D, Li JL, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J]. Circulation, 2004, 109(10): 1292. |
14 | Su P, Feng SS, Li QW. Research progress of the structure and function of NF-kappaB and IkappaB in different animal groups[J]. Yi Chuan, 2016, 38(6): 523. |
15 | Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73. |
16 | 倪晓丽, 朱钧锴, 于红涛, 等. 纳米酶在医学治疗中的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2024, 45(2): 124. |
17 | 李杨, 徐增琦, 詹甜甜, 等. 包载血管内皮生长因子的乙二胺/聚己内酯微囊的制备及其生物活性的研究[J]. 口腔医学, 2016, 36(9): 778. |
18 | 王军, 程少文, 陈庆玉, 等. TGF-β微泡靶向治疗大鼠骨骼肌损伤的实验研究[J]. 局解手术学杂志, 2017, 26(9): 630. |
19 | Lu YP, Xu XY, Li JS. Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications[J]. J Mater Chem B, 2023, 11(15): 3338. |
20 | 张家盛, 吴刚, 邱江. 组织工程中细胞与生物材料相互作用研究进展[J]. 生物工程学报, 2021, 37(8): 2668. |
21 | Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109883. |
22 | Hao DK, Lopez JM, Chen JN, et al. Engineering extracellular microenvironment for tissue regeneration[J]. Bioengineering (Basel), 2022, 9(5): 202. |
23 | Zhang WY, Liu Y, Zhang H. Extracellular matrix: an important regulator of cell functions and skeletal muscle development[J]. Cell Biosci, 2021, 11(1): 65. |
24 | Liu JX, Gao JF, Liang ZX, et al. Mesenchymal stem cells and their microenvironment[J]. Stem Cell Res Ther, 2022, 13(1): 429. |
25 | Kim A, Downer MA, Berry CE, et al. Investigating immunomodulatory biomaterials for preventing the foreign body response[J]. Bioengineering (Basel), 2023, 10(12): 1411. |
26 | Choi B, Lee CJ, Yu JW. Distinctive role of inflammation in tissue repair and regeneration[J]. Arch Pharm Res, 2023, 46(2): 78. |
27 | 李璐, 刘雨晴, 张树鹏, 等. 免疫表型异常的DLBCL病理及临床分析[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(2): 90. |
28 | Nielsen PR, Kragstrup TW, Deleuran BW, et al. Infections as risk factor for autoimmune diseases - a nationwide study[J]. J Autoimmun, 2016, 74: 176. |
29 | Monteiro NO, Casanova MR, Quinteira R, et al. Biomimetic surface topography as a potential modulator of macrophages inflammatory response to biomaterials[J]. Biomater Adv, 2022, 141: 213128. |
30 | Whitaker R, Hernaez-Estrada B, Hernandez RM, et al. Immunomodulatory biomaterials for tissue repair[J]. Chem Rev, 2021, 121(18): 11305. |
31 | Fetz AE, Radic MZ, Bowlin GL. Neutrophils in biomaterial-guided tissue regeneration: matrix reprogramming for angiogenesis[J]. Tissue Eng Part B Rev, 2021, 27(2): 95. |
32 | Liu WJ, Zhang GL, Wu JR, et al. Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications[J]. J Nanobiotechnology, 2020, 18(1): 9. |
33 | Ren XZ, Han YM, Wang J, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery - an efficient strategy to accelerate diabetic wound healing with improved angiogenesis[J]. Acta Biomater, 2018, 70: 140. |
34 | Lino MM, Sim?es S, Vila?a A, et al. Modulation of angiogenic activity by light-activatable miRNA-loaded nanocarriers[J]. ACS Nano, 2018, 12(6): 5207. |
35 | Chigurupati S, Mughal MR, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing[J]. Biomaterials, 2013, 34(9): 2194. |
36 | Kim JE, Lee J, Jang MJ, et al. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes[J]. Biomater Sci, 2015, 3(3): 509. |
37 | Lau P, Bidin N, Islam S, et al. Influence of gold nanoparticles on wound healing treatment in rat model: photobiomodulation therapy[J]. Lasers Surg Med, 2017, 49(4): 380. |
38 | Saiding Q, Chen YY, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J]. Mater Today Bio, 2023, 21: 100691. |
39 | Guerin DJ, Kha CX, Tseng KAS. From cell death to regeneration: rebuilding after injury[J]. Front Cell Dev Biol, 2021, 9: 655048. |
40 | 李亚, 高晓然, 程翠, 等. pH和透明质酸酶响应性抗菌水凝胶的制备和性能研究[C]//2020(第4届)抗菌科学与技术论坛论文摘要集. 广州: 全国卫生产业企业管理协会抗菌产业分会, 2020: 13. |
41 | Qi XX, Yan HM, Li YX. ATRP-based synthesis of a pH-sensitive amphiphilic block polymer and its self-assembled micelles with hollow mesoporous silica as DOX carriers for controlled drug release[J]. RSC Adv, 2021, 11(48): 29986. |
42 | Patil TV, Patel DK, Dutta SD, et al. Graphene oxide-based stimuli-responsive platforms for biomedical applications[J]. Molecules, 2021, 26(9): 2797. |
43 | Sun Y, Zheng L, Yang Y, et al. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications[J]. Nanomicro Lett, 2020, 12(1):103. |
44 | Wang W, Shao A, Zhang N, et al. Cationic Polymethacrylate-Modified Liposomes Significantly Enhanced Doxorubicin Delivery and Antitumor Activity[J]. Sci Rep, 2017, 7:43036. |
45 | 吴海洋. 面向生物医用的光响应型水凝胶的设计与制备[D]. 合肥: 中国科学技术大学, 2022. |
46 | Chen J, Chen TX, Fang QL, et al. Gd2O3/b-TiO2 composite nanoprobes with ultra-high photoconversion efficiency for MR image-guided NIR-II photothermal therapy[J]. Exploration (Beijing), 2022, 2(6): 20220014. |
47 | Kehrloesser D, Behrendt PJ, Hampp N. Two-photon absorption triggered drug delivery from a polymer for intraocular lenses in presence of an UV-absorber[J]. J Photochem Photobiol A Chem, 2012, 248: 8. |
48 | Li HB, Chen CM, An Q, et al. Photo-responsive nanoparticles for β-lapachone delivery in vitro [J]. Chin Chem Lett, 2018, 29(9): 1347. |
49 | Gao ZH, Yuan PT, Wang DH, et al. Photo-controlled release of fipronil from a coumarin triggered precursor[J]. Bioorg Med Chem Lett, 2017, 27(11): 2528. |
50 | Rosenbauer EM, Wagner M, Musyanovych A, et al. Controlled release from polyurethane nanocapsules via pH, UV-light-or temperature-induced stimuli[J]. Macromolecules, 2010, 43(11): 5083. |
51 | Xing QJ, Li NJ, Chen DY, et al. Light-responsive amphiphilic copolymer coated nanoparticles as nanocarriers and real-time monitors for controlled drug release[J]. J Mater Chem B, 2014, 2(9): 1182. |
52 | Morinaga H, Morikawa H, Wang YM, et al. Amphiphilic copolymer having acid-labile acetal in the side chainas a hydrophobe: controlled release of aldehyde by thermoresponsive aggregation-dissociation of polymer micelles[J]. Macromolecules, 2009, 42(6): 2229. |
53 | Bae YH, Okano T, Kim SW. \"On-off\" thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels[J]. Pharm Res, 1991, 8(5): 624. |
54 | Wang C, Zhang GY, Liu GH, et al. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin[J]. J Control Release, 2017, 259: 149. |
55 | Han L, Zhang XY, Wang YL, et al. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials[J]. J Control Release, 2017, 259: 40. |
56 | Hu YW, Du YZ, Liu N, et al. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier[J]. J Control Release, 2015, 206: 91. |
57 | Song J, Jańczewski D, Ma YJ, et al. Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films[J]. J Mater Chem B, 2013, 1(6): 828. |
58 | Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium[J]. Nanotechnology, 2011, 22(8): 085101. |
59 | Mousavi SD, Maghsoodi F, Panahandeh F, et al. Doxorubicin delivery via magnetic nanomicelles comprising from reduction-responsive poly (ethylene glycol)?b?poly(ε?caprolactone) (PEG-SS-PCL) and loaded with superparamagnetic iron oxide (SPIO) nanoparticles: preparation, characterization and simulation[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 631. |
60 | Gao L, Fan K, Yan X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications[J]. Theranostics 2017, 7(13):3207-3227. |
61 | Esposito M, Kennergren C, Holmstr?m N, et al. Morphologic and immunohistochemical observations of tissues surrounding retrieved transvenous pacemaker leads[J]. J Biomed Mater Res, 2002, 63(5): 548. |
62 | Amukarimi S, Mozafari M. Biodegradable magnesium biomaterials-road to the clinic[J]. Bioengineering (Basel), 2022, 9(3): 107. |
63 | Umuhoza D, Yang F, Long DP, et al. Strategies for tuning the biodegradation of silk fibroin-based materials for tissue engineering applications[J]. ACS Biomater Sci Eng, 2020, 6(3): 1290. |
64 | Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix[J]. Cell Stem Cell, 2009, 5(1): 17. |
65 | Sun Q, Hou Y, Chu ZQ, et al. Soft overcomes the hard: flexible materials adapt to cell adhesion to promote cell mechanotransduction[J]. Bioact Mater, 2021, 10: 397. |
66 | Ye K, Wang X, Cao LP, et al. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate[J]. Nano Lett, 2015, 15(7): 4720. |
67 | Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate[J]. Nature, 2009, 462(7272): 433. |
68 | Yao X, Peng R, Ding JD. Cell-material interactions revealed via material techniques of surface patterning[J]. Adv Mater, 2013, 25(37): 5257. |
69 | Gregory DA, Taylor CS, Fricker ATR, et al. Polyhydroxyalkanoates and their advances for biomedical applications[J]. Trends Mol Med, 2022, 28(4): 331. |
70 | Bruneau M, Bennici S, Brendle J, et al. Systems for stimuli-controlled release: materials and applications[J]. J Control Release, 2019, 294: 355. |
71 | Bruggeman KF, Rodriguez AL, Parish CL, et al. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel[J]. Nanotechnology, 2016, 27(38): 385102. |
72 | Fan TJ, Yan L, He SL, et al. Biodistribution, degradability and clearance of 2D materials for their biomedical applications[J]. Chem Soc Rev, 2022, 51(18): 7732. |
In the field of tissue regeneration and repair, biomaterials are essential, and their use can enhance patient outcomes and prognoses. A class of materials known as smart-responsive biomaterials is able to react and change in response to various environmental stimuli, including light, temperature, pH, electric and magnetic fields, and biomolecules. Because of these materials' special qualities, tissue engineering could benefit greatly from their use. An overview of smart response and smart responsive biomaterials' mechanism for encouraging tissue healing will be provided in this study, along with an analysis of the difficulties and potential applications of smart responsive biomaterials in tissue regeneration and repair.
","bibtexUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=724","abstractUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/10.3969/j.issn.2097-0005.2024.12.009","zuoZheCn_L":"张海峰, 郑士亚, 程韬, 邵翔宇, 李俊生","juanUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/Y2024","lanMu_en":"Reviews","qiUrl_en":"http://xuebao.sdfmu.edu.cn/EN/Y2024/V45/I12","zuoZhe_EN":"Haifeng ZHANG1, Shiya ZHENG2, Tao CHENG1, Xiangyu SHAO1, Junsheng LI1(智能响应性生物材料在组织修复与再生中的应用进展
张海峰, 郑士亚, 程韬, 邵翔宇, 李俊生
betway必威登陆网址 (betway.com )学报››2024, Vol. 45››Issue (12): 752-758.
智能响应性生物材料在组织修复与再生中的应用进展
Advances in the application of smart responsive biomaterials in tissue repair and regeneration
生物材料在组织修复与再生领域中扮演着至关重要的角色,其应用可显著提高临床治疗效果,并改善患者预后。智能响应性生物材料是一类能够对外界刺激如温度、pH值、光照、电场、磁场以及生物分子等做出响应并产生相应变化的材料,在组织工程中展现出巨大的应用前景。本文将对智能响应性生物材料促进组织修复机制及智能响应机制作一综述,并进一步分析智能响应性生物材料在组织修复与再生过程中的挑战和未来发展方向。
In the field of tissue regeneration and repair, biomaterials are essential, and their use can enhance patient outcomes and prognoses. A class of materials known as smart-responsive biomaterials is able to react and change in response to various environmental stimuli, including light, temperature, pH, electric and magnetic fields, and biomolecules. Because of these materials' special qualities, tissue engineering could benefit greatly from their use. An overview of smart response and smart responsive biomaterials' mechanism for encouraging tissue healing will be provided in this study, along with an analysis of the difficulties and potential applications of smart responsive biomaterials in tissue regeneration and repair.
smart responsive biomaterials/tissue repair/regenerative medicine
1 | Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J].Nature,2008,453(7193): 314. |
2 | 戴建武. 引导组织再生智能生物材料的转化研究[J].生命科学,2016,28(8): 907. |
3 | 曹谊林, 刘伟, 张文杰, 等. 组织工程研究进展[J].上海交通大学学报(医学版),2012,32(9): 1241. |
4 | 张海璇, 孟旬, 李平. 光和温度刺激响应型材料[J].化学进展,2008,20(5): 657. |
5 | 柴梅, 黄琛琛, 夏胜男, 等. 铸瓷粘结桥修复深覆(牙合)伴单颗前牙缺失的临床效果[J].betway必威登陆网址 (betway.com )学报,2024,45(6): 326. |
6 | Panayi AC, Orgill DP. Current use of biological scaffolds in plastic surgery[J].Plast Reconstr Surg,2019,143(1): 209. |
7 | Yannas IV, Lee E, Orgill DP, et al. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin[J].Proc Natl Acad Sci U S A,1989,86(3): 933. |
8 | Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering -- in vivo andin vitroapplications[J].Clin Plast Surg,2012,39(1): 33. |
9 | O'Loughlin A, Kulkarni M, Vaughan EE, et al. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model[J].Stem Cell Res Ther,2013,4(6): 158. |
10 | Long LY, Hu C, Liu WQ, et al. Injectable multifunctional hyaluronic acid/methylcellulose hydrogels for chronic wounds repairing[J].Carbohydr Polym,2022,289: 119456. |
11 | Luo YS, Xu XF, Ye ZM, et al. 3D bioprinted mesenchymal stromal cells in skin wound repair[J].Front Surg,2022,9: 988843. |
12 | Teng M, Huang YS, Zhang HS. Application of stems cells in wound healing--an update[J].Wound Repair Regen,2014,22(2): 151. |
13 | Rehman J, Traktuev D, Li JL, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J].Circulation,2004,109(10): 1292. |
14 | Su P, Feng SS, Li QW. Research progress of the structure and function of NF-kappaB and IkappaB in different animal groups[J].Yi Chuan,2016,38(6): 523. |
15 | Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases[J].Prog Mol Biol Transl Sci,2017,147: 1-73. |
16 | 倪晓丽, 朱钧锴, 于红涛, 等. 纳米酶在医学治疗中的研究进展[J].betway必威登陆网址 (betway.com )学报,2024,45(2): 124. |
17 | 李杨, 徐增琦, 詹甜甜, 等. 包载血管内皮生长因子的乙二胺/聚己内酯微囊的制备及其生物活性的研究[J].口腔医学,2016,36(9): 778. |
18 | 王军, 程少文, 陈庆玉, 等. TGF-β微泡靶向治疗大鼠骨骼肌损伤的实验研究[J].局解手术学杂志,2017,26(9): 630. |
19 | Lu YP, Xu XY, Li JS. Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications[J].J Mater Chem B,2023,11(15): 3338. |
20 | 张家盛, 吴刚, 邱江. 组织工程中细胞与生物材料相互作用研究进展[J].生物工程学报,2021,37(8): 2668. |
21 | Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications[J].Mater Sci Eng C Mater Biol Appl,2019,104: 109883. |
22 | Hao DK, Lopez JM, Chen JN, et al. Engineering extracellular microenvironment for tissue regeneration[J].Bioengineering (Basel),2022,9(5): 202. |
23 | Zhang WY, Liu Y, Zhang H. Extracellular matrix: an important regulator of cell functions and skeletal muscle development[J].Cell Biosci,2021,11(1): 65. |
24 | Liu JX, Gao JF, Liang ZX, et al. Mesenchymal stem cells and their microenvironment[J].Stem Cell Res Ther,2022,13(1): 429. |
25 | Kim A, Downer MA, Berry CE, et al. Investigating immunomodulatory biomaterials for preventing the foreign body response[J].Bioengineering (Basel),2023,10(12): 1411. |
26 | Choi B, Lee CJ, Yu JW. Distinctive role of inflammation in tissue repair and regeneration[J].Arch Pharm Res,2023,46(2): 78. |
27 | 李璐, 刘雨晴, 张树鹏, 等. 免疫表型异常的DLBCL病理及临床分析[J].betway必威登陆网址 (betway.com )学报,2022,43(2): 90. |
28 | Nielsen PR, Kragstrup TW, Deleuran BW, et al. Infections as risk factor for autoimmune diseases - a nationwide study[J].J Autoimmun,2016,74: 176. |
29 | Monteiro NO, Casanova MR, Quinteira R, et al. Biomimetic surface topography as a potential modulator of macrophages inflammatory response to biomaterials[J].Biomater Adv,2022,141: 213128. |
30 | Whitaker R, Hernaez-Estrada B, Hernandez RM, et al. Immunomodulatory biomaterials for tissue repair[J].Chem Rev,2021,121(18): 11305. |
31 | Fetz AE, Radic MZ, Bowlin GL. Neutrophils in biomaterial-guided tissue regeneration: matrix reprogramming for angiogenesis[J].Tissue Eng Part B Rev,2021,27(2): 95. |
32 | Liu WJ, Zhang GL, Wu JR, et al. Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications[J].J Nanobiotechnology,2020,18(1): 9. |
33 | Ren XZ, Han YM, Wang J, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery - an efficient strategy to accelerate diabetic wound healing with improved angiogenesis[J].Acta Biomater,2018,70: 140. |
34 | Lino MM, Sim?es S, Vila?a A, et al. Modulation of angiogenic activity by light-activatable miRNA-loaded nanocarriers[J].ACS Nano,2018,12(6): 5207. |
35 | Chigurupati S, Mughal MR, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing[J].Biomaterials,2013,34(9): 2194. |
36 | Kim JE, Lee J, Jang MJ, et al. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes[J].Biomater Sci,2015,3(3): 509. |
37 | Lau P, Bidin N, Islam S, et al. Influence of gold nanoparticles on wound healing treatment in rat model: photobiomodulation therapy[J].Lasers Surg Med,2017,49(4): 380. |
38 | Saiding Q, Chen YY, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J].Mater Today Bio,2023,21: 100691. |
39 | Guerin DJ, Kha CX, Tseng KAS. From cell death to regeneration: rebuilding after injury[J].Front Cell Dev Biol,2021,9: 655048. |
40 | 李亚, 高晓然, 程翠, 等. pH和透明质酸酶响应性抗菌水凝胶的制备和性能研究[C]//2020(第4届)抗菌科学与技术论坛论文摘要集. 广州: 全国卫生产业企业管理协会抗菌产业分会,2020: 13. |
41 | Qi XX, Yan HM, Li YX. ATRP-based synthesis of a pH-sensitive amphiphilic block polymer and its self-assembled micelles with hollow mesoporous silica as DOX carriers for controlled drug release[J].RSC Adv,2021,11(48): 29986. |
42 | Patil TV, Patel DK, Dutta SD, et al. Graphene oxide-based stimuli-responsive platforms for biomedical applications[J].Molecules,2021,26(9): 2797. |
43 | Sun Y, Zheng L, Yang Y, et al. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications[J].Nanomicro Lett,2020,12(1):103. |
44 | Wang W, Shao A, Zhang N, et al. Cationic Polymethacrylate-Modified Liposomes Significantly Enhanced Doxorubicin Delivery and Antitumor Activity[J].Sci Rep,2017,7:43036. |
45 | 吴海洋. 面向生物医用的光响应型水凝胶的设计与制备[D]. 合肥: 中国科学技术大学,2022. |
46 | Chen J, Chen TX, Fang QL, et al. Gd2O3/b-TiO2composite nanoprobes with ultra-high photoconversion efficiency for MR image-guided NIR-II photothermal therapy[J].Exploration (Beijing),2022,2(6): 20220014. |
47 | Kehrloesser D, Behrendt PJ, Hampp N. Two-photon absorption triggered drug delivery from a polymer for intraocular lenses in presence of an UV-absorber[J].J Photochem Photobiol A Chem,2012,248: 8. |
48 | Li HB, Chen CM, An Q, et al. Photo-responsive nanoparticles for β-lapachone deliveryin vitro[J].Chin Chem Lett,2018,29(9): 1347. |
49 | Gao ZH, Yuan PT, Wang DH, et al. Photo-controlled release of fipronil from a coumarin triggered precursor[J].Bioorg Med Chem Lett,2017,27(11): 2528. |
50 | Rosenbauer EM, Wagner M, Musyanovych A, et al. Controlled release from polyurethane nanocapsules via pH, UV-light-or temperature-induced stimuli[J].Macromolecules,2010,43(11): 5083. |
51 | Xing QJ, Li NJ, Chen DY, et al. Light-responsive amphiphilic copolymer coated nanoparticles as nanocarriers and real-time monitors for controlled drug release[J].J Mater Chem B,2014,2(9): 1182. |
52 | Morinaga H, Morikawa H, Wang YM, et al. Amphiphilic copolymer having acid-labile acetal in the side chainas a hydrophobe: controlled release of aldehyde by thermoresponsive aggregation-dissociation of polymer micelles[J].Macromolecules,2009,42(6): 2229. |
53 | Bae YH, Okano T, Kim SW. "On-off" thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels[J].Pharm Res,1991,8(5): 624. |
54 | Wang C, Zhang GY, Liu GH, et al. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin[J].J Control Release,2017,259: 149. |
55 | Han L, Zhang XY, Wang YL, et al. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials[J].J Control Release,2017,259: 40. |
56 | Hu YW, Du YZ, Liu N, et al. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier[J].J Control Release,2015,206: 91. |
57 | Song J, Jańczewski D, Ma YJ, et al. Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films[J].J Mater Chem B,2013,1(6): 828. |
58 | Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium[J].Nanotechnology,2011,22(8): 085101. |
59 | Mousavi SD, Maghsoodi F, Panahandeh F, et al. Doxorubicin delivery via magnetic nanomicelles comprising from reduction-responsive poly (ethylene glycol)?b?poly(ε?caprolactone) (PEG-SS-PCL) and loaded with superparamagnetic iron oxide (SPIO) nanoparticles: preparation, characterization and simulation[J].Mater Sci Eng C Mater Biol Appl,2018,92: 631. |
60 | Gao L, Fan K, Yan X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications[J].Theranostics2017,7(13):3207-3227. |
61 | Esposito M, Kennergren C, Holmstr?m N, et al. Morphologic and immunohistochemical observations of tissues surrounding retrieved transvenous pacemaker leads[J].J Biomed Mater Res,2002,63(5): 548. |
62 | Amukarimi S, Mozafari M. Biodegradable magnesium biomaterials-road to the clinic[J].Bioengineering (Basel),2022,9(3): 107. |
63 | Umuhoza D, Yang F, Long DP, et al. Strategies for tuning the biodegradation of silk fibroin-based materials for tissue engineering applications[J].ACS Biomater Sci Eng,2020,6(3): 1290. |
64 | Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix[J].Cell Stem Cell,2009,5(1): 17. |
65 | Sun Q, Hou Y, Chu ZQ, et al. Soft overcomes the hard: flexible materials adapt to cell adhesion to promote cell mechanotransduction[J].Bioact Mater,2021,10: 397. |
66 | Ye K, Wang X, Cao LP, et al. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate[J].Nano Lett,2015,15(7): 4720. |
67 | Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate[J].Nature,2009,462(7272): 433. |
68 | Yao X, Peng R, Ding JD. Cell-material interactions revealed via material techniques of surface patterning[J].Adv Mater,2013,25(37): 5257. |
69 | Gregory DA, Taylor CS, Fricker ATR, et al. Polyhydroxyalkanoates and their advances for biomedical applications[J].Trends Mol Med,2022,28(4): 331. |
70 | Bruneau M, Bennici S, Brendle J, et al. Systems for stimuli-controlled release: materials and applications[J].J Control Release,2019,294: 355. |
71 | Bruggeman KF, Rodriguez AL, Parish CL, et al. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel[J].Nanotechnology,2016,27(38): 385102. |
72 | Fan TJ, Yan L, He SL, et al. Biodistribution, degradability and clearance of 2D materials for their biomedical applications[J].Chem Soc Rev,2022,51(18): 7732. |
/
〈 | 〉 |