
慢性血栓栓塞性肺动脉高压(chronic thromboembolic pulmonary hypertension, CTEPH)是一种肺动脉压力超过正常值的肺血管疾病,肺栓塞(pulmonary embolism, PE)发生血栓不溶解是继发CTEPH的主要原因,而细胞代谢、免疫炎症反应及基因突变等因素诱导了肺动脉的重塑。对于易PE继发CTEPH的患者,发现BMPR2突变及转录因子FoxO1变化对肺动脉重塑也起着重要作用。目前已知的重要失调通路有TGF‐β和PI3K,仍需要进一步的深入研究其他通路,充分了解导致CTEPH的过程。本文总结了既往关于CTEPH相关的文献,对其主要的发病机制进行表述,为寻找CTEPH的个体化治疗需要的靶点提供参考。
","endNoteUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=EndNote&id=506","reference":"1 | Simonneau G, Torbicki A, Dorfmüller P, et al. The pathophysiology of chronic thromboembolic pulmonary hypertension[J]. Eur Respir Rev, 2017, 26(143): 160112. |
2 | Park JS, Ahn J, Choi JH, et al. The predictive value of echocardiography for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Korea[J]. Korean J Intern Med, 2017, 32(1): 85. |
3 | 边竞. 急性肺动脉栓塞后慢性血栓栓塞性肺动脉高压的发病率及危险因素分析[D]. 石家庄: 河北医科大学, 2015. |
4 | Ikubo Y, Sanada TJ, Hosomi K, et al. Altered gut microbiota and its association with inflammation in patients with chronic thromboembolic pulmonary hypertension: a single-center observational study in Japan[J]. BMC Pulm Med, 2022, 22(1): 138. |
5 | 马菁苑, 蔡雨春. 肺动脉高压中的肺血管重塑[J]. 医学研究生学报, 2021, 34(9): 985. |
6 | Kamimura Y, Okumura N, Adachi S, et al. Usefulness of scoring right ventricular function for assessment of prognostic factors in patients with chronic thromboembolic pulmonary hypertension[J]. Heart Vessels, 2018, 33(10): 1220. |
7 | 彭瑞, 赵丽, 赵琦, 等. 肿瘤糖代谢机制的研究进展[J]. 国际检验医学杂志, 2021, 42(7): 872. |
8 | He X, Du S, Lei T, et al. PKM2 in carcinogenesis and oncotherapy[J]. Oncotarget, 2017, 8(66): 110656. |
9 | Hou PP, Luo LJ, Chen HZ, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment[J]. Mol Cell, 2020, 78(6): 1192. |
10 | Yu Z, Wang D, Tang Y. PKM2 promotes cell metastasis and inhibits autophagy via the JAK/STAT3 pathway in hepatocellular carcinoma[J]. Mol Cell Biochem, 2021, 476(5): 2001. |
11 | Peek CB, Levine DC, Cedernaes J, et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle[J]. Cell Metab, 2017, 25(1): 86. |
12 | Sun Y, Chen Y, Xu M, et al. Shenmai injection supresses glycolysis and enhances cisplatin cytotoxicity in cisplatin-resistant A549/DDP cells via the AKT-mTOR-c-Myc signaling pathway[J]. Biomed Res Int, 2020, 2020: 9243681. |
13 | Dasgupta A, Wu D, Tian L, et al. Mitochondria in the pulmonary vasculature in health and disease: oxygen-sensing, metabolism, and dynamics[J]. Compr Physiol, 2020, 10(2): 713. |
14 | Smolders VF, Zodda E, Quax PHA, et al. Metabolic alterations in cardiopulmonary vascular dysfunction[J]. Front Mol Biosci, 2019, 5: 120. |
15 | Caruso P, Dunmore BJ, Schlosser K, et al. Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2[J]. Circulation, 2017, 136(25): 2451. |
16 | Bisserier M, Janostiak R, Lezoualc'h F, et al. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease[J]. Vasc Biol, 2020, 2(1): R17. |
17 | Rafikova O, Al Ghouleh I, Rafikov R. Focus on early events: pathogenesis of pulmonary arterial hypertension development[J]. Antioxid Redox Signal, 2019, 31(13): 933. |
18 | Rapoport RM, Zuccarello M. Endothelin(A)-endothelin(B) receptor cross talk in endothelin-1-induced contraction of smooth muscle[J]. J Cardiovasc Pharmacol, 2012, 60(5): 483. |
19 | Ozen G, Benyahia C, Amgoud Y, et al. Interaction between PGI2 and ET-1 pathways in vascular smooth muscle from Group-Ⅲ pulmonary hypertension patients[J]. Prostaglandins Other Lipid Mediat, 2020, 146: 106388. |
20 | Zhao Y, Wang H, Li X, et al. Ang Ⅱ-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer[J]. J Cell Physiol, 2014, 229(11): 1855. |
21 | 贾奇花, 黎玲, 宋文杰, 等. 血管紧张素Ⅱ上调连接子蛋白43(Cx43)促进人肺动脉平滑肌细胞的增殖和迁移[J]. 细胞与分子免疫学杂志, 2020, 36(7): 616. |
22 | 金立军, 杨沙宁, 黄从新, 等. 血管紧张素Ⅱ在肺动脉高压形成中的作用及其临床意义[J]. 临床荟萃, 2001, 16(6): 264. |
23 | Stenmark KR, Rabinovitch M. Emerging therapies for the treatment of pulmonary hypertension[J]. Pediatr Crit Care Med, 2010, 11(2 ): S85. |
24 | Rabinovitch M, Guignabert C, Humbert M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension[J]. Circ Res, 2014, 115(1): 165. |
25 | Zhang XX, Wang HY, Yang XF, et al. Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells[J]. World J Gastroenterol, 2021, 27(18): 2141. |
26 | Berghausen EM, Feik L, Zierden M, et al. Key inflammatory pathways underlying vascular remodeling in pulmonary hypertension[J]. Herz, 2019, 44(2): 130. |
27 | Horiuchi T, Mitoma H, Harashima S, et al. Transmembrane TNF-α: structure, function and interaction with anti-TNF agents[J]. Rheumatology (Oxford), 2010, 49(7): 1215. |
28 | Skoro-Sajer N, Gerges C, Gerges M, et al. Usefulness of thrombosis and inflammation biomarkers in chronic thromboembolic pulmonary hypertension-sampling plasma and surgical specimens[J]. J Heart Lung Transplant, 2018, 37(9): 1067. |
29 | Abid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension[J]. Eur Respir J, 2019, 54(4): 1802308. |
30 | Kumar R, Mickael C, Kassa B, et al. Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension[J]. Cardiovasc Res, 2020, 116(12): 2021. |
31 | Frid MG, McKeon BA, Thurman JM, et al. Immunoglobulin-driven complement activation regulates proinflammatory remodeling in pulmonary hypertension[J]. Am J Respir Crit Care Med, 2020, 201(2): 224. |
32 | D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, et al. Hallmarks of pulmonary hypertension: mesenchymal and inflammatory cell metabolic reprogramming[J]. Antioxid Redox Signal, 2018, 28(3): 230. |
33 | Tuder RM, Archer SL, Dorfmüller P, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension[J]. J Am Coll Cardiol, 2013, 62(25 ): D4. |
34 | Opitz I, Kirschner MB. Molecular research in chronic thromboembolic pulmonary hypertension[J]. Int J Mol Sci, 2019, 20(3): 784. |
35 | Thompson AAR, Lawrie A. Targeting vascular remodeling to treat pulmonary arterial hypertension[J]. Trends Mol Med, 2017, 23(1): 31. |
36 | Orriols M, Gomez-Puerto MC, Ten Dijke P. BMP type Ⅱ receptor as a therapeutic target in pulmonary arterial hypertension[J]. Cell Mol Life Sci, 2017, 74(16): 2979. |
37 | Dannewitz Prosseda S, Tian X, Kuramoto K, et al. FHIT, a novel modifier gene in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2019, 199(1): 83. |
38 | Eelen G, Verlinden L, Maes C, et al. Forkhead box O transcription factors in chondrocytes regulate endochondral bone formation[J]. J Steroid Biochem Mol Biol, 2016, 164: 337. |
39 | Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation[J]. Biomed Res Int, 2014, 2014: 925350. |
40 | Huang DY, Chao Y, Tai MH, et al. STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death[J]. J Biomed Sci, 2012, 19(1): 35. |
41 | Xie L, Ushmorov A, Leith?user F, et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma[J]. Blood, 2012, 119(15): 3503. |
Chronic thromboembolic pulmonary hypertension (CTEPH) is a pulmonary vascular disease in which the pulmonary artery pressure exceeds the normal value. Pulmonary embolism (PE) is the main cause of secondary CTEPH, while cell metabolism, immune inflammatory reaction and gene mutation induce a series of pulmonary artery remodeling. After genetic and molecular changes, it was found that BMPR2 mutation and transcription factor FoxO1 change also played an important role in pulmonary artery remodeling in patients with secondary CTEPH. At present, it is known that TGF-β and PI3K are the important dysregulated pathways, but further study of other pathways is still needed to fully understand the complex process leading to CTEPH. This review summarizes the current literature on pulmonary hypertension, describes some of its main pathogenesis, and looks for the individualized treatment of CTEPH to find the needed target.
","bibtexUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=506","abstractUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/10.3969/j.issn.2097-0005.2023.06.014","zuoZheCn_L":"王小飞, 管凤仙, 刘帅, 管清龙","juanUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/Y2023","lanMu_en":"Reviews","qiUrl_en":"http://xuebao.sdfmu.edu.cn/EN/Y2023/V44/I6","zuoZhe_EN":"Xiaofei WANG1(肺栓塞继发慢性血栓栓塞性肺动脉高压的发病机制及最新进展
王小飞, 管凤仙, 刘帅, 管清龙
betway必威登陆网址 (betway.com )学报››2023, Vol. 44››Issue (6): 472-476.
肺栓塞继发慢性血栓栓塞性肺动脉高压的发病机制及最新进展
Pathogenesis and latest progress of chronic thromboembolic pulmonary hypertension secondary to pulmonary thromboembolism
慢性血栓栓塞性肺动脉高压(chronic thromboembolic pulmonary hypertension, CTEPH)是一种肺动脉压力超过正常值的肺血管疾病,肺栓塞(pulmonary embolism, PE)发生血栓不溶解是继发CTEPH的主要原因,而细胞代谢、免疫炎症反应及基因突变等因素诱导了肺动脉的重塑。对于易PE继发CTEPH的患者,发现BMPR2突变及转录因子FoxO1变化对肺动脉重塑也起着重要作用。目前已知的重要失调通路有TGF‐β和PI3K,仍需要进一步的深入研究其他通路,充分了解导致CTEPH的过程。本文总结了既往关于CTEPH相关的文献,对其主要的发病机制进行表述,为寻找CTEPH的个体化治疗需要的靶点提供参考。
Chronic thromboembolic pulmonary hypertension (CTEPH) is a pulmonary vascular disease in which the pulmonary artery pressure exceeds the normal value. Pulmonary embolism (PE) is the main cause of secondary CTEPH, while cell metabolism, immune inflammatory reaction and gene mutation induce a series of pulmonary artery remodeling. After genetic and molecular changes, it was found that BMPR2 mutation and transcription factor FoxO1 change also played an important role in pulmonary artery remodeling in patients with secondary CTEPH. At present, it is known that TGF-β and PI3K are the important dysregulated pathways, but further study of other pathways is still needed to fully understand the complex process leading to CTEPH. This review summarizes the current literature on pulmonary hypertension, describes some of its main pathogenesis, and looks for the individualized treatment of CTEPH to find the needed target.
慢性血栓栓塞性肺动脉高压/内皮细胞/平滑肌细胞/基因/因子/分子标志物
chronic thromboembolic pulmonary hypertension/endothelial cells/smooth muscle cell/gene/factor/biomarkers
1 | Simonneau G, Torbicki A, Dorfmüller P, et al. The pathophysiology of chronic thromboembolic pulmonary hypertension[J]. Eur Respir Rev, 2017, 26(143): 160112. |
2 | Park JS, Ahn J, Choi JH, et al. The predictive value of echocardiography for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Korea[J]. Korean J Intern Med, 2017, 32(1): 85. |
3 | 边竞. 急性肺动脉栓塞后慢性血栓栓塞性肺动脉高压的发病率及危险因素分析[D]. 石家庄: 河北医科大学, 2015. |
4 | Ikubo Y, Sanada TJ, Hosomi K, et al. Altered gut microbiota and its association with inflammation in patients with chronic thromboembolic pulmonary hypertension: a single-center observational study in Japan[J]. BMC Pulm Med, 2022, 22(1): 138. |
5 | 马菁苑, 蔡雨春. 肺动脉高压中的肺血管重塑[J]. 医学研究生学报, 2021, 34(9): 985. |
6 | Kamimura Y, Okumura N, Adachi S, et al. Usefulness of scoring right ventricular function for assessment of prognostic factors in patients with chronic thromboembolic pulmonary hypertension[J]. Heart Vessels, 2018, 33(10): 1220. |
7 | 彭瑞, 赵丽, 赵琦, 等. 肿瘤糖代谢机制的研究进展[J]. 国际检验医学杂志, 2021, 42(7): 872. |
8 | He X, Du S, Lei T, et al. PKM2 in carcinogenesis and oncotherapy[J]. Oncotarget, 2017, 8(66): 110656. |
9 | Hou PP, Luo LJ, Chen HZ, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment[J]. Mol Cell, 2020, 78(6): 1192. |
10 | Yu Z, Wang D, Tang Y. PKM2 promotes cell metastasis and inhibits autophagy via the JAK/STAT3 pathway in hepatocellular carcinoma[J]. Mol Cell Biochem, 2021, 476(5): 2001. |
11 | Peek CB, Levine DC, Cedernaes J, et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle[J]. Cell Metab, 2017, 25(1): 86. |
12 | Sun Y, Chen Y, Xu M, et al. Shenmai injection supresses glycolysis and enhances cisplatin cytotoxicity in cisplatin-resistant A549/DDP cells via the AKT-mTOR-c-Myc signaling pathway[J]. Biomed Res Int, 2020, 2020: 9243681. |
13 | Dasgupta A, Wu D, Tian L, et al. Mitochondria in the pulmonary vasculature in health and disease: oxygen-sensing, metabolism, and dynamics[J]. Compr Physiol, 2020, 10(2): 713. |
14 | Smolders VF, Zodda E, Quax PHA, et al. Metabolic alterations in cardiopulmonary vascular dysfunction[J]. Front Mol Biosci, 2019, 5: 120. |
15 | Caruso P, Dunmore BJ, Schlosser K, et al. Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2[J]. Circulation, 2017, 136(25): 2451. |
16 | Bisserier M, Janostiak R, Lezoualc'h F, et al. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease[J]. Vasc Biol, 2020, 2(1): R17. |
17 | Rafikova O, Al Ghouleh I, Rafikov R. Focus on early events: pathogenesis of pulmonary arterial hypertension development[J]. Antioxid Redox Signal, 2019, 31(13): 933. |
18 | Rapoport RM, Zuccarello M. Endothelin(A)-endothelin(B) receptor cross talk in endothelin-1-induced contraction of smooth muscle[J]. J Cardiovasc Pharmacol, 2012, 60(5): 483. |
19 | Ozen G, Benyahia C, Amgoud Y, et al. Interaction between PGI2 and ET-1 pathways in vascular smooth muscle from Group-Ⅲ pulmonary hypertension patients[J]. Prostaglandins Other Lipid Mediat, 2020, 146: 106388. |
20 | Zhao Y, Wang H, Li X, et al. Ang Ⅱ-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer[J]. J Cell Physiol, 2014, 229(11): 1855. |
21 | 贾奇花, 黎玲, 宋文杰, 等. 血管紧张素Ⅱ上调连接子蛋白43(Cx43)促进人肺动脉平滑肌细胞的增殖和迁移[J]. 细胞与分子免疫学杂志, 2020, 36(7): 616. |
22 | 金立军, 杨沙宁, 黄从新, 等. 血管紧张素Ⅱ在肺动脉高压形成中的作用及其临床意义[J]. 临床荟萃, 2001, 16(6): 264. |
23 | Stenmark KR, Rabinovitch M. Emerging therapies for the treatment of pulmonary hypertension[J]. Pediatr Crit Care Med, 2010, 11(2 ): S85. |
24 | Rabinovitch M, Guignabert C, Humbert M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension[J]. Circ Res, 2014, 115(1): 165. |
25 | Zhang XX, Wang HY, Yang XF, et al. Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells[J]. World J Gastroenterol, 2021, 27(18): 2141. |
26 | Berghausen EM, Feik L, Zierden M, et al. Key inflammatory pathways underlying vascular remodeling in pulmonary hypertension[J]. Herz, 2019, 44(2): 130. |
27 | Horiuchi T, Mitoma H, Harashima S, et al. Transmembrane TNF-α: structure, function and interaction with anti-TNF agents[J]. Rheumatology (Oxford), 2010, 49(7): 1215. |
28 | Skoro-Sajer N, Gerges C, Gerges M, et al. Usefulness of thrombosis and inflammation biomarkers in chronic thromboembolic pulmonary hypertension-sampling plasma and surgical specimens[J]. J Heart Lung Transplant, 2018, 37(9): 1067. |
29 | Abid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension[J]. Eur Respir J, 2019, 54(4): 1802308. |
30 | Kumar R, Mickael C, Kassa B, et al. Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension[J]. Cardiovasc Res, 2020, 116(12): 2021. |
31 | Frid MG, McKeon BA, Thurman JM, et al. Immunoglobulin-driven complement activation regulates proinflammatory remodeling in pulmonary hypertension[J]. Am J Respir Crit Care Med, 2020, 201(2): 224. |
32 | D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, et al. Hallmarks of pulmonary hypertension: mesenchymal and inflammatory cell metabolic reprogramming[J]. Antioxid Redox Signal, 2018, 28(3): 230. |
33 | Tuder RM, Archer SL, Dorfmüller P, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension[J]. J Am Coll Cardiol, 2013, 62(25 ): D4. |
34 | Opitz I, Kirschner MB. Molecular research in chronic thromboembolic pulmonary hypertension[J]. Int J Mol Sci, 2019, 20(3): 784. |
35 | Thompson AAR, Lawrie A. Targeting vascular remodeling to treat pulmonary arterial hypertension[J]. Trends Mol Med, 2017, 23(1): 31. |
36 | Orriols M, Gomez-Puerto MC, Ten Dijke P. BMP type Ⅱ receptor as a therapeutic target in pulmonary arterial hypertension[J]. Cell Mol Life Sci, 2017, 74(16): 2979. |
37 | Dannewitz Prosseda S, Tian X, Kuramoto K, et al. FHIT, a novel modifier gene in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2019, 199(1): 83. |
38 | Eelen G, Verlinden L, Maes C, et al. Forkhead box O transcription factors in chondrocytes regulate endochondral bone formation[J]. J Steroid Biochem Mol Biol, 2016, 164: 337. |
39 | Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation[J]. Biomed Res Int, 2014, 2014: 925350. |
40 | Huang DY, Chao Y, Tai MH, et al. STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death[J]. J Biomed Sci, 2012, 19(1): 35. |
41 | Xie L, Ushmorov A, Leith?user F, et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma[J]. Blood, 2012, 119(15): 3503. |
/
〈 | 〉 |