
乳腺癌作为全球女性健康的重大挑战,其研究的重要性和紧迫性日益凸显。干扰素调节因子3(interferon regulatory factor 3,IRF3)属于人类干扰素调节因子(interferon regulatory factors,IRFs)家族的一员,是一个关键的转录因子。IRF3在天然免疫应答的信号传递过程中起着重要的调节作用。近年来研究揭示了IRF3在肿瘤免疫学领域的关键作用,特别是在乳腺癌中。IRF3不仅调节乳腺癌细胞的生长和凋亡,而且通过诱导Ⅰ型干扰素(type I interferons,IFN-Ⅰ)及其他重要细胞因子的产生,对肿瘤细胞的行为产生影响。然而,在乳腺癌中,IRF3的激活受到多种机制的抑制,这包括阻断IRF3依赖的细胞凋亡途径和通过调节微RNA表达来抑制干扰素基因刺激因子(stimulator of interferon genes,STING)等。在特定情况下,IRF3还可能促进乳腺癌发生及复发。本综述全面探讨了IRF3的基本特征、参与的信号通路、在乳腺癌发展中的作用及当前研究的最新进展,并总结了基于IRF3作用机制的潜在治疗方法。
","endNoteUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=EndNote&id=660","reference":"1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209. |
2 | Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(6): 524. |
3 | Qing FR, Liu ZP. Interferon regulatory factor 7 in inflammation, cancer and infection[J]. Front Immunol, 2023, 14: 1190841. |
4 | Zhang ZX, Wei JK, Ren RM, et al. Anti-virus effects of interferon regulatory factors (IRFs) identified in ascidian Ciona savignyi[J]. Fish Shellfish Immunol, 2020, 106: 273. |
5 | Al Hamrashdi M, Brady G. Regulation of IRF3 activation in human antiviral signaling pathways[J]. Biochem Pharmacol, 2022, 200: 115026. |
6 | Petro TM. IFN regulatory factor 3 in health and disease[J]. J Immunol, 2020, 205(8): 1981. |
7 | Li Y, Hu XH, Song YQ, et al. Identification of novel alternative splicing variants of interferon regulatory factor 3[J]. Biochim Biophys Acta, 2011, 1809(3): 166. |
8 | Lin R, Mamane Y, Hiscott J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains[J]. Mol Cell Biol, 1999, 19(4): 2465. |
9 | Glanz A, Chakravarty S, Varghese M, et al. Transcriptional and Non-Transcriptional activation, posttranslational modifications, and antiviral functions of interferon regulatory factor 3 and viral antagonism by the SARS-Coronavirus[J]. Viruses, 2021, 13(4): 575. |
10 | Zeng Q, Liu JQ, Li ZY, et al. Japanese encephalitis virus NS4B inhibits interferon beta production by targeting TLR3 and TRIF[J]. Vet Microbiol, 2023, 284: 109849. |
11 | Ma H, Kang ZH, Foo TK, et al. Disrupted BRCA1-PALB2 interaction induces tumor immunosuppression and T-lymphocyte infiltration in HCC through cGAS-STING pathway[J]. Hepatology, 2023, 77(1): 33. |
12 | Xia ZC, Xu G, Nie LY, et al. NAC1 potentiates cellular antiviral signaling by bridging MAVS and TBK1[J]. J Immunol, 2019, 203(4): 1001. |
13 | Zhang JW, Chen YF, Chen XF, et al. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer[J]. Cell Death Differ, 2021, 28(1): 139. |
14 | Yum S, Li MH, Fang Y, et al. TBK1 recruitment to Sting activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections[J]. Proc Natl Acad Sci U S A, 2021, 118(14): e2100225118. |
15 | Liu HY, Ye GA, Liu XH, et al. Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis[J]. Cell Rep, 2022, 41(2): 111469. |
16 | Smale ST. Selective transcription in response to an inflammatory stimulus[J]. Cell, 2010, 140(6): 833. |
17 | Glanz A, Chakravarty S, Fan SM, et al. Autophagic degradation of IRF3 induced by the small-molecule auranofin inhibits its transcriptional and proapoptotic activities[J]. J Biol Chem, 2021, 297(5): 101274. |
18 | Tarassishin L, Bauman A, Suh HS, et al. Anti-viral and anti-inflammatory mechanisms of the innate immune transcription factor interferon regulatory factor 3: relevance to human CNS diseases[J]. J Neuroimmune Pharmacol, 2013, 8(1): 132. |
19 | King KR, Aguirre AD, Ye YX, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction[J]. Nat Med, 2017, 23(12): 1481. |
20 | Li SR, Mirlekar B, Johnson BM, et al. STING-induced regulatory B cells compromise NK function in cancer immunity[J]. Nature, 2022, 610(7931): 373. |
21 | Ghosh M, Saha S, Bettke J, et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis[J]. Cancer Cell, 2021, 39(4): 494. |
22 | Qiu JY, Xu BH, Ye D, et al. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction[J]. Nat Cancer, 2023, 4(1): 43. |
23 | Cheon HJ, Wang YX, Wightman SM, et al. How cancer cells make and respond to interferon-I[J]. Trends Cancer, 2023, 9(1): 83. |
24 | Parkes EE, Walker SM, Taggart LE, et al. Activation of STING-Dependent innate immune signaling by S-Phase-Specific DNA damage in breast cancer[J]. J Natl Cancer Inst, 2017, 109(1): djw199. |
25 | Bernardo AR, Cosgaya JM, Aranda AA, et al. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells[J]. Apoptosis, 2017, 22(7): 920. |
26 | Manetsch P, B?hi F, Nowak K, et al. PARP7-mediated ADP-ribosylation of FRA1 promotes cancer cell growth by repressing IRF1- and IRF3-dependent apoptosis[J]. Proc Natl Acad Sci U S A, 2023, 120(49): e2309047120. |
27 | Koop A, Lepenies I, Braum O, et al. Novel splice variants of human IKKε negatively regulate IKKε-induced IRF3 and NF-kB activation[J]. Eur J Immunol, 2011, 41(1): 224. |
28 | Ren LS, Guo DR, Wan XH, et al. EYA2 upregulates miR-93 to promote tumorigenesis of breast cancer by targeting and inhibiting the Sting signaling pathway[J]. Carcinogenesis, 2021: bgab001. |
29 | Tamura Y, Tsutsumi S, Miyazono K, et al. PolyI:C attenuates transforming growth factor-β signaling to induce cytostasis of surrounding cells by secreted factors in triple-negative breast cancer[J]. Cancer Sci, 2022, 113(3): 940. |
30 | Qadir AS, Stults AM, Murmann AE, et al. The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer[J]. Sci Rep, 2020, 10(1): 1310. |
31 | Gaston J, Cheradame L, Yvonnet V, et al. Correction: intracellular Sting inactivation sensitizes breast cancer cells to genotoxic agents[J]. Oncotarget, 2019, 10(41): 4249. |
32 | Gaston J, Cheradame L, Yvonnet V, et al. Intracellular Sting inactivation sensitizes breast cancer cells to genotoxic agents[J]. Oncotarget, 2016, 7(47): 77205. |
33 | Pantelidou C, Sonzogni O, De Oliveria Taveira M, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-Deficient models of triple-negative breast cancer[J]. Cancer Discov, 2019, 9(6): 722. |
34 | Miar A, Arnaiz E, Bridges E, et al. Hypoxia induces transcriptional and translational downregulation of the type Ⅰ IFN pathway in multiple cancer cell types[J]. Cancer Res, 2020, 80(23): 5245. |
35 | Wang J, Wu SG. Breast cancer: an overview of current therapeutic strategies, challenge, and perspectives[J]. Breast Cancer (Dove Med Press), 2023, 15: 721. |
36 | Arteaga CL, Sliwkowski MX, Osborne CK, et al. Treatment of HER2-positive breast cancer: current status and future perspectives[J]. Nat Rev Clin Oncol, 2011, 9(1): 16. |
37 | Burguin A, Diorio C, Durocher F. Breast cancer treatments: updates and new challenges[J]. J Pers Med, 2021, 11(8): 808. |
38 | Demir Cetinkaya B, Biray Avci C. Molecular perspective on targeted therapy in breast cancer: a review of current status[J]. Med Oncol, 2022, 39(10): 149. |
39 | Basu A, Ramamoorthi G, Jia YS, et al. Immunotherapy in breast cancer: current status and future directions[J]. Adv Cancer Res, 2019, 143: 295. |
40 | Lu X, Wang X, Cheng H, et al. Anti-triple-negative breast cancer metastasis efficacy and molecular mechanism of the Sting agonist for innate immune pathway[J]. Ann Med, 2023, 55(1): 2210845. |
41 | Takahashi-Ruiz L, Fermaintt CS, Wilkinson NJ, et al. The microtubule destabilizer eribulin synergizes with Sting agonists to promote antitumor efficacy in Triple-Negative breast cancer models[J]. Cancers (Basel), 2022, 14(23): 5962. |
42 | Yeo SK, Haas M, Manupati K, et al. AZI2 mediates TBK1 activation at unresolved selective autophagy cargo receptor complexes with implications for CD8 T-cell infiltration in breast cancer[J]. Autophagy, 2024, 20(3): 525. |
43 | Liu X, He B. Selective editing of herpes simplex virus 1 enables interferon induction and viral replication that destroy malignant cells[J]. J Virol, 2019, 93(2): e01761. |
44 | Brown MC, Mosaheb MM, Mohme M, et al. Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling[J]. Nat Commun, 2021, 12(1): 1858. |
45 | Long Y, Guo JX, Chen JL, et al. GPR162 activates Sting dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer[J]. Signal Transduct Target Ther, 2023, 8(1): 48. |
46 | Guo SF, Zhu W, Yin ZQ, et al. Proanthocyanidins attenuate breast cancer-induced bone metastasis by inhibiting Irf-3/c-jun activation[J]. Anticancer Drugs, 2019, 30(10): 998. |
As a significant challenge to women's health globally, the research of breast cancer has shown increasingly prominence and urgency. Interferon regulatory factor 3 (IRF3), a member of the human interferon regulatory factor (IRF) family, serves as a crucial transcription factor. IRF3 plays a significant role in regulating the signal transduction process of the innate immune response. Recent research advancements have discovered IRF3’s pivotal role in the field of tumor immunology, particularly its significant impact on breast cancer. IRF3 regulates the growth and apoptosis of breast cancer cells and influences tumor cell behavior by inducing the production of type I interferons (IFN-I) and other critical cytokines. However, in breast cancer, the activation of IRF3 is suppressed by various mechanisms, including the obstruction of IRF3-dependent apoptosis pathways and the inhibition of stimulator of interferon genes (STING) expression through the modulation of microRNA expression. Under certain circumstances, IRF3 may also promote the occurrence and recurrence of breast cancer. This review comprehensively explores the fundamental characteristics of IRF3, its signaling pathways, roles in developing breast cancer, the latest research progress, and summarizes potential therapeutic strategies based on the mechanism of action of IRF3.
","bibtexUrl_en":"http://xuebao.sdfmu.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=660","abstractUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/10.3969/j.issn.2097-0005.2024.05.012","zuoZheCn_L":"许中满, 吴思铭, 王晓玲, 钟田雨, 张文娟","juanUrl_cn":"http://xuebao.sdfmu.edu.cn/CN/Y2024","lanMu_en":"Reviews","qiUrl_en":"http://xuebao.sdfmu.edu.cn/EN/Y2024/V45/I5","zuoZhe_EN":"Zhongman XU1,2, Siming WU1,2, Xiaoling WANG1,2,3, Tianyu ZHONG1,2,3, Wenjuan ZHANG1,2,3,4(IRF3在乳腺癌中的研究进展
许中满, 吴思铭, 王晓玲, 钟田雨, 张文娟
betway必威登陆网址 (betway.com )学报››2024, Vol. 45››Issue (5): 315-320.
IRF3在乳腺癌中的研究进展
Advances in research on IRF3 in breast cancer
乳腺癌作为全球女性健康的重大挑战,其研究的重要性和紧迫性日益凸显。干扰素调节因子3(interferon regulatory factor 3,IRF3)属于人类干扰素调节因子(interferon regulatory factors,IRFs)家族的一员,是一个关键的转录因子。IRF3在天然免疫应答的信号传递过程中起着重要的调节作用。近年来研究揭示了IRF3在肿瘤免疫学领域的关键作用,特别是在乳腺癌中。IRF3不仅调节乳腺癌细胞的生长和凋亡,而且通过诱导Ⅰ型干扰素(type I interferons,IFN-Ⅰ)及其他重要细胞因子的产生,对肿瘤细胞的行为产生影响。然而,在乳腺癌中,IRF3的激活受到多种机制的抑制,这包括阻断IRF3依赖的细胞凋亡途径和通过调节微RNA表达来抑制干扰素基因刺激因子(stimulator of interferon genes,STING)等。在特定情况下,IRF3还可能促进乳腺癌发生及复发。本综述全面探讨了IRF3的基本特征、参与的信号通路、在乳腺癌发展中的作用及当前研究的最新进展,并总结了基于IRF3作用机制的潜在治疗方法。
As a significant challenge to women's health globally, the research of breast cancer has shown increasingly prominence and urgency. Interferon regulatory factor 3 (IRF3), a member of the human interferon regulatory factor (IRF) family, serves as a crucial transcription factor. IRF3 plays a significant role in regulating the signal transduction process of the innate immune response. Recent research advancements have discovered IRF3’s pivotal role in the field of tumor immunology, particularly its significant impact on breast cancer. IRF3 regulates the growth and apoptosis of breast cancer cells and influences tumor cell behavior by inducing the production of type I interferons (IFN-I) and other critical cytokines. However, in breast cancer, the activation of IRF3 is suppressed by various mechanisms, including the obstruction of IRF3-dependent apoptosis pathways and the inhibition of stimulator of interferon genes (STING) expression through the modulation of microRNA expression. Under certain circumstances, IRF3 may also promote the occurrence and recurrence of breast cancer. This review comprehensively explores the fundamental characteristics of IRF3, its signaling pathways, roles in developing breast cancer, the latest research progress, and summarizes potential therapeutic strategies based on the mechanism of action of IRF3.
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3): 209. |
2 | Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022[J].CA Cancer J Clin,2022,72(6): 524. |
3 | Qing FR, Liu ZP. Interferon regulatory factor 7 in inflammation, cancer and infection[J].Front Immunol,2023,14: 1190841. |
4 | Zhang ZX, Wei JK, Ren RM, et al. Anti-virus effects of interferon regulatory factors (IRFs) identified in ascidian Ciona savignyi[J].Fish Shellfish Immunol,2020,106: 273. |
5 | Al Hamrashdi M, Brady G. Regulation of IRF3 activation in human antiviral signaling pathways[J].Biochem Pharmacol,2022,200: 115026. |
6 | Petro TM. IFN regulatory factor 3 in health and disease[J].J Immunol,2020,205(8): 1981. |
7 | Li Y, Hu XH, Song YQ, et al. Identification of novel alternative splicing variants of interferon regulatory factor 3[J].Biochim Biophys Acta,2011,1809(3): 166. |
8 | Lin R, Mamane Y, Hiscott J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains[J].Mol Cell Biol,1999,19(4): 2465. |
9 | Glanz A, Chakravarty S, Varghese M, et al. Transcriptional and Non-Transcriptional activation, posttranslational modifications, and antiviral functions of interferon regulatory factor 3 and viral antagonism by the SARS-Coronavirus[J].Viruses,2021,13(4): 575. |
10 | Zeng Q, Liu JQ, Li ZY, et al. Japanese encephalitis virus NS4B inhibits interferon beta production by targeting TLR3 and TRIF[J].Vet Microbiol,2023,284: 109849. |
11 | Ma H, Kang ZH, Foo TK, et al. Disrupted BRCA1-PALB2 interaction induces tumor immunosuppression and T-lymphocyte infiltration in HCC through cGAS-STING pathway[J].Hepatology,2023,77(1): 33. |
12 | Xia ZC, Xu G, Nie LY, et al. NAC1 potentiates cellular antiviral signaling by bridging MAVS and TBK1[J].J Immunol,2019,203(4): 1001. |
13 | Zhang JW, Chen YF, Chen XF, et al. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer[J].Cell Death Differ,2021,28(1): 139. |
14 | Yum S, Li MH, Fang Y, et al. TBK1 recruitment to Sting activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections[J].Proc Natl Acad Sci U S A,2021,118(14): e2100225118. |
15 | Liu HY, Ye GA, Liu XH, et al. Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis[J].Cell Rep,2022,41(2): 111469. |
16 | Smale ST. Selective transcription in response to an inflammatory stimulus[J].Cell,2010,140(6): 833. |
17 | Glanz A, Chakravarty S, Fan SM, et al. Autophagic degradation of IRF3 induced by the small-molecule auranofin inhibits its transcriptional and proapoptotic activities[J].J Biol Chem,2021,297(5): 101274. |
18 | Tarassishin L, Bauman A, Suh HS, et al. Anti-viral and anti-inflammatory mechanisms of the innate immune transcription factor interferon regulatory factor 3: relevance to human CNS diseases[J].J Neuroimmune Pharmacol,2013,8(1): 132. |
19 | King KR, Aguirre AD, Ye YX, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction[J].Nat Med,2017,23(12): 1481. |
20 | Li SR, Mirlekar B, Johnson BM, et al. STING-induced regulatory B cells compromise NK function in cancer immunity[J].Nature,2022,610(7931): 373. |
21 | Ghosh M, Saha S, Bettke J, et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis[J].Cancer Cell,2021,39(4): 494. |
22 | Qiu JY, Xu BH, Ye D, et al. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction[J].Nat Cancer,2023,4(1): 43. |
23 | Cheon HJ, Wang YX, Wightman SM, et al. How cancer cells make and respond to interferon-I[J].Trends Cancer,2023,9(1): 83. |
24 | Parkes EE, Walker SM, Taggart LE, et al. Activation of STING-Dependent innate immune signaling by S-Phase-Specific DNA damage in breast cancer[J].J Natl Cancer Inst,2017,109(1): djw199. |
25 | Bernardo AR, Cosgaya JM, Aranda AA, et al. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells[J].Apoptosis,2017,22(7): 920. |
26 | Manetsch P, B?hi F, Nowak K, et al. PARP7-mediated ADP-ribosylation of FRA1 promotes cancer cell growth by repressing IRF1- and IRF3-dependent apoptosis[J].Proc Natl Acad Sci U S A,2023,120(49): e2309047120. |
27 | Koop A, Lepenies I, Braum O, et al. Novel splice variants of human IKKε negatively regulate IKKε-induced IRF3 and NF-kB activation[J].Eur J Immunol,2011,41(1): 224. |
28 | Ren LS, Guo DR, Wan XH, et al. EYA2 upregulates miR-93 to promote tumorigenesis of breast cancer by targeting and inhibiting the Sting signaling pathway[J].Carcinogenesis,2021: bgab001. |
29 | Tamura Y, Tsutsumi S, Miyazono K, et al. PolyI:C attenuates transforming growth factor-β signaling to induce cytostasis of surrounding cells by secreted factors in triple-negative breast cancer[J].Cancer Sci,2022,113(3): 940. |
30 | Qadir AS, Stults AM, Murmann AE, et al. The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer[J].Sci Rep,2020,10(1): 1310. |
31 | Gaston J, Cheradame L, Yvonnet V, et al. Correction: intracellular Sting inactivation sensitizes breast cancer cells to genotoxic agents[J].Oncotarget,2019,10(41): 4249. |
32 | Gaston J, Cheradame L, Yvonnet V, et al. Intracellular Sting inactivation sensitizes breast cancer cells to genotoxic agents[J].Oncotarget,2016,7(47): 77205. |
33 | Pantelidou C, Sonzogni O, De Oliveria Taveira M, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-Deficient models of triple-negative breast cancer[J].Cancer Discov,2019,9(6): 722. |
34 | Miar A, Arnaiz E, Bridges E, et al. Hypoxia induces transcriptional and translational downregulation of the type Ⅰ IFN pathway in multiple cancer cell types[J].Cancer Res,2020,80(23): 5245. |
35 | Wang J, Wu SG. Breast cancer: an overview of current therapeutic strategies, challenge, and perspectives[J].Breast Cancer (Dove Med Press),2023,15: 721. |
36 | Arteaga CL, Sliwkowski MX, Osborne CK, et al. Treatment of HER2-positive breast cancer: current status and future perspectives[J].Nat Rev Clin Oncol,2011,9(1): 16. |
37 | Burguin A, Diorio C, Durocher F. Breast cancer treatments: updates and new challenges[J].J Pers Med,2021,11(8): 808. |
38 | Demir Cetinkaya B, Biray Avci C. Molecular perspective on targeted therapy in breast cancer: a review of current status[J].Med Oncol,2022,39(10): 149. |
39 | Basu A, Ramamoorthi G, Jia YS, et al. Immunotherapy in breast cancer: current status and future directions[J].Adv Cancer Res,2019,143: 295. |
40 | Lu X, Wang X, Cheng H, et al. Anti-triple-negative breast cancer metastasis efficacy and molecular mechanism of the Sting agonist for innate immune pathway[J].Ann Med,2023,55(1): 2210845. |
41 | Takahashi-Ruiz L, Fermaintt CS, Wilkinson NJ, et al. The microtubule destabilizer eribulin synergizes with Sting agonists to promote antitumor efficacy in Triple-Negative breast cancer models[J].Cancers (Basel),2022,14(23): 5962. |
42 | Yeo SK, Haas M, Manupati K, et al. AZI2 mediates TBK1 activation at unresolved selective autophagy cargo receptor complexes with implications for CD8 T-cell infiltration in breast cancer[J].Autophagy,2024,20(3): 525. |
43 | Liu X, He B. Selective editing of herpes simplex virus 1 enables interferon induction and viral replication that destroy malignant cells[J].J Virol,2019,93(2): e01761. |
44 | Brown MC, Mosaheb MM, Mohme M, et al. Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling[J].Nat Commun,2021,12(1): 1858. |
45 | Long Y, Guo JX, Chen JL, et al. GPR162 activates Sting dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer[J].Signal Transduct Target Ther,2023,8(1): 48. |
46 | Guo SF, Zhu W, Yin ZQ, et al. Proanthocyanidins attenuate breast cancer-induced bone metastasis by inhibiting Irf-3/c-jun activation[J].Anticancer Drugs,2019,30(10): 998. |
/
〈 | 〉 |