[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492. doi:10.3322/caac.21492pmid:30207593 |
[2] |
Tuttle RM, Haddad RI, Ball DW, et al. Thyroid carcinoma, version 2.2014[J]. J Natl Compr Canc Netw, 2014,12(12):1671-1680. DOI: 10.6004/jnccn.2014.0169. doi:10.6004/jnccn.2014.0169pmid:25505208 |
[3] |
韩婧, 康骅. 甲状腺癌的发病现状及影响因素[J]. 实用预防医学, 2018,25(7):894-897. DOI: 10.3969/j.issn.1006-3110.2018.07.037 |
[4] |
Wang X, Li M, Wang Z, et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells[J]. J Biol Chem, 2015,290(7):3925-3935. DOI: 10.1074/jbc.M114.596866. doi:10.1074/jbc.M114.596866pmid:25538231 |
[5] |
Deng J, Liang Y, Liu C, et al. The up-regulation of long non-coding RNA AFAP1-AS1 is associated with the poor prognosis of NSCLC patients[J]. Biomed Pharmacother, 2015,75:8-11. DOI: 10.1016/j.biopha.2015.07.003. doi:10.1016/j.biopha.2015.07.003pmid:26463625 |
[6] |
Bo H, Gong Z, Zhang W, et al. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma[J]. Oncotarget, 2015,6(24):20404-20418. DOI: 10.18632/oncotarget.4057. doi:10.18632/oncotarget.4057pmid:26246469 |
[7] |
Wang F, Ni H, Sun F, et al. Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer[J]. Biomed Pharmacother, 2016,81:152-159. DOI: 10.1016/j.biopha.2016.04.009. doi:10.1016/j.biopha.2016.04.009pmid:27261589 |
[8] |
Ye Y, Chen J, Zhou Y, et al. High expression of AFAP1-AS1 is associated with poor survival and short-term recurrence in pancreatic ductal adenocarcinoma[J]. J Transl Med, 2015,13:137. DOI: 10.1186/s12967-015-0490-4. doi:10.1186/s12967-015-0490-4pmid:25925763 |
[9] |
Ma F, Wang SH, Cai Q, et al. Overexpression of lncRNA AFAP1-AS1 predicts poor prognosis and promotes cells proliferation and invasion in gallbladder cancer[J]. Biomed Pharmacother, 2016,84:1249-1255. DOI: 10.1016/j.biopha.2016.10.064. doi:10.1016/j.biopha.2016.10.064pmid:27810781 |
[10] |
Zhang JY, Weng MZ, Song FB, et al. Long noncoding RNA AFAP1-AS1 indicates a poor prognosis of hepatocellular carcinoma and promotes cell proliferation and invasion via upregulation of the RhoA/Rac2 signaling[J]. Int J Oncol, 2016,48(4):1590-1598. DOI: 10.3892/ijo.2016.3385. doi:10.3892/ijo.2016.3385pmid:26892468 |
[11] |
Zeng Z, Bo H, Gong Z, et al. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis[J]. Tumour Biol, 2016,37(1):729-737. DOI: 10.1007/s13277-015-3860-x. doi:10.1007/s13277-015-3860-xpmid:26245991 |
[12] |
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms[J]. Nat Rev Cancer, 2003,3(5):362-374. DOI: 10.1038/nrc1075. doi:10.1038/nrc1075pmid:12724734 |
[13] |
Ridley AJ. RhoA, RhoB and RhoC have different roles in cancer cell migration[J]. J Mocrosc, 2013,251(3):242-249. DOI: 10.1111/jmi.12025. |
[14] |
Karlsson R, Pedersen ED, Wang Z, et al. Rho GTPase function in tumorigenesis[J]. Biochim Biophys Acta, 2009,1796(2):91-98. DOI: 10.1016/j.bbcan.2009.03.003. doi:10.1016/j.bbcan.2009.03.003pmid:19327386 |
[15] |
Vega FM, Ridley AJ. Rho GTPases in cancer cell biology[J]. FEBS Lett, 2008,582(14):2093-2101. DOI: 10.1016/j.febslet.2008.04.039. doi:10.1016/j.febslet.2008.04.039pmid:18460342 |
[16] |
Vega FM, Fruhwirth G, Ng T, et al. RhoA and RhoC have distinct roles in migration and invasion by acting through different targets[J]. J Cell Biol, 2011,193(4):655-665. DOI: 10.1083/jcb.201011038. doi:10.1083/jcb.201011038pmid:21576392 |
[17] |
Zhou X, Zhan W, Bian W, et al. GOLPH3 regulates the migration and invasion of glioma cells though RhoA[J]. Biochem Biophys Res Commun, 2013,433(3):338-344. DOI: 10.1016/j.bbrc.2013.03.003. doi:10.1016/j.bbrc.2013.03.003pmid:23500462 |
[18] |
Rosman DS, Phukan S, Huang CC, et al. TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation[J]. Cancer Res, 2008,68(5):1319-1328. DOI: 10.1158/0008-5472.CAN-07-5424. doi:10.1158/0008-5472.CAN-07-5424pmid:18316594 |
[19] |
Klein G, Vellenga E, Fraaije MW, et al. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, eg acute leukemia[J]. Crit Rev Oncol Hematol, 2004,50(2):87-100. DOI: 10.1016/j.critrevonc.2003.09.001. doi:10.1016/j.critrevonc.2003.09.001pmid:15157658 |
[20] |
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nat Rev Cancer, 2002,2(3):161-174. DOI: 10.1038/nrc745. doi:10.1038/nrc745pmid:11990853 |
[21] |
Yeh MW, Rougier JP, Park JW, et al. Differentiated thyroid cancer cell invasion is regulated through epidermal growth factor receptor-dependent activation of matrix metalloproteinase (MMP)-2/gelatinase A[J]. Endocr Relat Cancer, 2006,13(4):1173-1183. DOI: 10.1677/erc.1.01226. doi:10.1677/erc.1.01226pmid:17158762 |
[22] |
Jia W, Gao XJ, Zhang ZD, et al. S100A4 silencing suppresses proliferation, angiogenesis and invasion of thyroid cancer cells through downregulation of MMP-9 and VEGF[J]. Eur Rev Med Pharmacol Sci, 2013,17(11):1495-1508. pmid:23771538 |
[23] |
Fu M, Wang C, Li Z, et al. Minireview: Cyclin D1: normal and abnormal functions[J]. Endocrinology, 2004,145(12):5439-5447. DOI: 10.1210/en.2004-0959. doi:10.1210/en.2004-0959pmid:15331580 |
[24] |
Yang K, Hitomi M, Stacey DW. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell[J]. Cell Div, 2006,1:32. DOI: 10.1186/1747-1028-1-32. doi:10.1186/1747-1028-1-32pmid:17176475 |
[25] |
Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells[J]. Curr Opin Cell Biol, 2003,15(2):158-163. DOI: 10.1016/s0955-0674(03)00008-5. doi:10.1016/S0955-0674(03)00008-5 |